[数论][NOIP]解方程

题目梗概

给出一个一元n次多项式,求出1-m的整数解。

系数a<=|10^10000|

 

思考

拿到题目,你可能会想到秦九韶算法。但是系数a[i]怎么处理呢?

思考了好久,看了下题解。发现只要取模就可以了,为什么呢?

$a_{0}+a_{1} \times x + a_{2} \times x^2 + a_{3} \times x^3 \cdots \cdots +a_{n} \times x^n = 0$

$\left (a_{0}+a_{1} \times x + a_{2} \times x^2 + a_{3} \times x^3 \cdots \cdots +a_{n} \times x^n  \right ) \%  MOD = 0 \% MOD$

$\left (a_{0}\% MOD+a_{1} \times x \% MOD + a_{2} \times x^2 \% MOD + a_{3} \times x^3 \% MOD \cdots \cdots +a_{n} \times x^n \% MOD \right ) \%  MOD = 0 \% MOD$

MOD应为一个大质数,如果是合数的话有几率出现问题。 比如(2%4+2%4)%4=0%4 但实际上(2+2)!=0

读入的时候一边读入一边模,同时用秦九韶算法验证即可。

#include <algorithm>
#include <cstdio>
#include <cstring>
typedef long long ll;
const ll maxn = 1e6+100;
const ll MOD = 1e9+7;
ll a[110],n,m,ans[maxn],cnt;

//读入
ll read(){
    ll sum = 0,flag=1;
    char c = getchar();
    while(c < '0' || c > '9'){
        if( c == '-' ) flag = -1;
        c = getchar();
    }
    while(c>='0' && c<='9'){
        sum = sum * 10 + c - '0';
        sum %= MOD;
        c = getchar();
    }
    return sum*flag;
}

//秦九韶算法
ll Run(ll x){
    ll sum = 0;
    for(register ll i=n+1;i>=1;i--){
        sum = sum * x + a[i];
        sum %= MOD;
    }
    return sum;
}

int main(){
    n = read();
    m = read();
    for(ll i=1;i<=n+1;i++){
        a[i] = read();
    }
    for(register ll i=1;i<=m;i++){
        if(Run(i)==0) ans[++cnt] = i;
    }
    printf("%lld\n",cnt);
    for(int i=1;i<=cnt;i++) printf("%lld\n",ans[i]);
    return 0;
}

 

转载于:https://www.cnblogs.com/OIerLYF/p/7292113.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值