最短路

本文详细介绍了一种用于寻找图中两点间最短路径的Dijkstra算法,并提供了完整的C++实现代码。该算法通过优先队列来优化搜索过程,适用于带权有向图和无向图。
 1 //dijkstra
 2 #include<queue>
 3 #include<cstring>
 4 
 5 using namespace std;
 6 
 7 const int MAXN = 100;
 8 const int MAXM = 10000;
 9 ////////////////////////////////////////////////
10 struct dij_edge{
11     int from, to, next, val;
12 }dij_e[MAXM];
13 
14 struct Node{
15     int x, d;
16     Node(){}
17     Node( int a, int b ): x( a ), d( b ){}
18     bool operator < ( Node a ) const{
19         return d > a.d;
20     }
21 };
22 
23 int dij_h[MAXN], dij_dis[MAXN], dij_cnt;
24 
25 void dij_init(){
26     dij_cnt = 0;
27     memset( dij_h, -1, sizeof( dij_h ) );
28 }
29 
30 void dij_add( int from, int to, int val ){
31     dij_e[dij_cnt].from = from;
32     dij_e[dij_cnt].to = to;
33     dij_e[dij_cnt].val = val;
34     dij_e[dij_cnt].next = dij_h[from];
35     dij_h[from] = dij_cnt++;
36 }
37 
38 void dij( dij_edge *edge, int *dis, int *h, int s ){
39     dis[s] = 0;
40 
41     priority_queue<Node> Q;
42     Q.push( Node( s, dis[s] ) );
43 
44     while( !Q.empty() ){
45         Node temp = Q.top(); Q.pop();
46         int x = temp.x;
47         if( temp.d > dis[x] ) continue;
48         for( int k = h[x]; k != -1; k = edge[k].next ){
49             int y = edge[k].to;
50             if( dis[y] > dis[x] + edge[k].val ){
51                 dis[y] = dis[x] + edge[k].val;
52                 Q.push( Node( y, dis[y] ) );
53             }
54         }
55     }
56 }
57 
58 //dij( dij_e, dij_dis, dij_h, source );
59 int main(){
60     return 0;
61 }

 

转载于:https://www.cnblogs.com/hollowstory/p/5703120.html

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符  | 博主筛选后可见
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值