【题目描述
Description】
辰辰是个天资聪颖的孩子,他的梦想是成为世界上最伟大的医师。为此,他想拜附近最有威望的医师为师。医师为了判断他的资质,给他出了一个难题。医师把他带到一个到处都是草药的山洞里对他说:“孩子,这个山洞里有一些不同的草药,采每一株都需要一些时间,每一株也有它自身的价值。我会给你一段时间,在这段时间里,你可以采到一些草药。如果你是一个聪明的孩子,你应该可以让采到的草药的总价值最大。”
如果你是辰辰,你能完成这个任务吗?
【输入描述
Input Description】
输入第一行有两个整数T(1<=T<=1000)和M(1<=M<=100),用一个空格隔开,T代表总共能够用来采药的时间,M代表山洞里的草药的数目。接下来的M行每行包括两个在1到100之间(包括1和100)的整数,分别表示采摘某株草药的时间和这株草药的价值。
【输出描述
Output Description】
输出包括一行,这一行只包含一个整数,表示在规定的时间内,可以采到的草药的最大总价值。
【数据规模】
对于30%的数据,M<=10;
对于全部的数据,M<=100。
【思路】
简单的01背包动态规划问题,f[i]表示用i分钟获得的草药最大价值,动态转移方程f[j]:=max(f[j],f[j-t[i]]+im[i]);
var f:array[0..10000000] of int64;
ti,im:array[0..1000000] of int64;
t,m,i,j:longint;
function max(x,y:longint):longint;
begin
if x>y then exit(x) else exit(y);
end;
begin
readln(t,m);
for i:=1 to m do
read(ti[i],im[i]);
for i:=1 to m do
for j:=t downto ti[i] do
if j-ti[i]>=0 then
f[j]:=max(f[j],f[j-ti[i]]+im[i]);
writeln(f[t]);
end.