多类图像识别案例

CIFAR-10

CIFAR-10数据集由10个类别的60000 32x32彩色图像组成,每个类别有6000张图像。有50000个训练图像和10000个测试图像。数据集分为五个训练集和一个测试集,每个集有10000个图像。测试集包含来自每个类的正好1000个随机选择的图像。训练集的每个类别5000个图像。图像类别如下:

下载数据集

可以去官网下载,https://www.cs.toronto.edu/~kriz/cifar.html

里面有很多种版本我们下载 CIFAR-10二进制版本。

二进制版本格式

二进制版本包含文件data_batch_1.bin,data_batch_2.bin,data_batch_4.bin,data_batch_5.bin以及test_batch.bin。这些文件的格式如下:

<1 x label> <3072 x像素>
...
<1 x label> <3072 x像素>

 

第一个字节是第一个图像的标签,它是0-9范围内的数字。接下来的3072个字节是图像像素的值。前1024个字节是红色通道值,接下来是1024个绿色,最后1024个是蓝色。

所以每个文件包含10000个这样的3073字节的“行”的图像,还有一个名为batches.meta.txt的文件。这是一个ASCII文件,将范围为0-9的数字标签映射到有意义的类名。

 

转载于:https://www.cnblogs.com/alexzhang92/p/10069570.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值