Isaacs, $\textit{Character Theory of Finite Groups}$, Theorem(2.8)
Every class function $\varphi$ of $G$ can be uniquely expressed in the form
$$\varphi=\sum_{\chi\in Irr(G)}a_{\chi}\chi,$$
where $a_{\chi}\in\mathbb{C}$. Furthermore, $\varphi$ is a character iff all of the $a_\chi$ are nonnegtive integers and $\varphi\neq0$.
Pf:
- Class functions of $G$ form a vector space whose dimension is the number of classes of $G$.
- $Irr(G)$ is a basis for this space. Consider $\sum a_i\chi_i=0$ at $e_i$.
博客介绍了Isaacs《Character Theory of Finite Groups》中定理(2.8),即有限群G的每个类函数φ可唯一表示为特定形式,且给出φ是特征的充要条件。还给出了证明思路,指出G的类函数构成向量空间,Irr(G)是该空间的基。
4584

被折叠的 条评论
为什么被折叠?



