每日定理15

博客介绍了Isaacs《Character Theory of Finite Groups》中定理(2.8),即有限群G的每个类函数φ可唯一表示为特定形式,且给出φ是特征的充要条件。还给出了证明思路,指出G的类函数构成向量空间,Irr(G)是该空间的基。

Isaacs, $\textit{Character Theory of Finite Groups}$, Theorem(2.8)

Every class function $\varphi$ of $G$ can be uniquely expressed in the form

$$\varphi=\sum_{\chi\in Irr(G)}a_{\chi}\chi,$$

where $a_{\chi}\in\mathbb{C}$. Furthermore, $\varphi$ is a character iff all of the $a_\chi$ are nonnegtive integers and $\varphi\neq0$.

Pf:

  • Class functions of $G$ form a vector space whose dimension is the number of classes of $G$.
  • $Irr(G)$ is a basis for this space. Consider $\sum a_i\chi_i=0$ at $e_i$.

转载于:https://www.cnblogs.com/zhengtao1992/p/10818296.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值