令牌桶算法和漏桶算法有什么区别_Go并发实战--限流算法

28c983ac2bbfe3e56c49552bf308ecdf.png

高并发系统为了服务的可用性面对高流量及qps高峰时通常有三种常见的应对措施:缓存、降级和限流。这一篇我们来看一下限流及go相应的实现。 限流算法通常有这么几种:计数器、令牌痛、漏桶,这几个算法的优缺点在这里就不多说了,网上有大量的文章介绍这几个算法,大家也可以借鉴我限流算法的那篇文章。 这里就这几种算法的思想借助go的API来实现一下:

计数器限流

这里用到的并发相关的API 主要是sync.Mutex 我们通过设定一个计数器ReqCount,当ReqCount大于MaxCount(计数器最大值)时不发放令牌(token),过来的请求因拿不到令牌直接返回或者触发其他的拒绝策略。 因为计数器的操作是一个典型的先判断再操作的竞态条件,并且存在另外一个专门置0的go协程,如果不加锁,在并发场景下发生问题的概率是非常大的,所以使用sync.Mutex,保证了操作的原子性。 计数器比较简单,下面来看一下实现的代码:

type AbandonReqLimitService struct {
    Interval time.Duration // 设置计数器的时间间隔
    MaxCount int // 计数器的最大值
    Lock     sync.Mutex // 锁
    ReqCount int // 计数器
}

func CreateAbandonReqLimitService(interval time.Duration, maxCount int) *AbandonReqLimitService {
    reqLimit := &AbandonReqLimitService{
        Interval: interval,
        MaxCount: maxCount,
    }
    go func() { // 开启一个go协程来定时更新计数器
        ticker := time.NewTicker(interval) // go中的定时器
        for {
            <-ticker.C
            reqLimit.Lock.Lock()
            reqLimit.ReqCount = 0
            reqLimit.Lock.Unlock()
        }
    }()
    return reqLimit
}

func (reqLimit *AbandonReqLimitService) GetTokenAbandonRequest() bool { // 取令牌函数
    reqLimit.Lock.Lock()
    defer reqLimit.Lock.Unlock()
    if reqLimit.ReqCount < reqLimit.MaxCount {
        reqLimit.ReqCount += 1
        return true
    } else {
        return false
    }
}

令牌桶限流

这里涉及的API 主要是channel,利用的就是channel的阻塞操作。 我们把一个指定尺寸channel,相当于一个指定容量的令牌桶,每一个空闲位置就是一个令牌。由于channel满时就无法向其中加元素,所以我们就可以以固定的速率消费channel中的消息(释放空间相当于添加令牌),取令牌就是添加一条消息,当令牌桶满时就无法正常添加消息(取令牌)了,这样就利用channel来构造了一个限流器。 下面来看一下代码:

type NotAbandonReqLimitService struct {
    TokenPool chan bool // 令牌桶
}
func CreateNewRequestLimitService(interval time.Duration, maxCnt int) *NotAbandonReqLimitService {
    reqLimit := &NotAbandonReqLimitService{}
    reqLimit.TokenPool = make(chan bool, maxCnt) // 令牌桶最大容量
    go func() {
        tmpStr := strconv.Itoa(maxCnt)
        maxCntInt64,_ := strconv.ParseInt(tmpStr, 10, 64)
        ticker := time.NewTicker( time.Duration(interval.Nanoseconds()/(maxCntInt64*1000*1000))* time.Millisecond) // 匀速添加令牌,1s/最大qps 就是添加的速率
        for {
            <- ticker.C
            <- reqLimit.TokenPool
        }
    }()
    return reqLimit
}
func (reqLimit *NotAbandonReqLimitService) GetTokenNotAbandonRequest() {
    reqLimit.TokenPool <- true // 消费令牌
}

在常用限流算法go的实现中,关于sync、chan的使用大致就是以上,这两个demo挺简单的,可以由浅入深帮助大家理解一下go并发编程及Mutex、chan 的API使用。 关于限流算法暂时就说这么多。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值