A family hierarchy is usually presented by a pedigree tree where all the nodes on the same level belong to the same generation. Your task is to find the generation with the largest population.
Input Specification:
Each input file contains one test case. Each case starts with two positive integers N (<) which is the total number of family members in the tree (and hence assume that all the members are numbered from 01 to N), and M (<) which is the number of family members who have children. Then M lines follow, each contains the information of a family member in the following format:
ID K ID[1] ID[2] ... ID[K]
where ID
is a two-digit number representing a family member, K
(>) is the number of his/her children, followed by a sequence of two-digit ID
's of his/her children. For the sake of simplicity, let us fix the root ID
to be 01
. All the numbers in a line are separated by a space.
Output Specification:
For each test case, print in one line the largest population number and the level of the corresponding generation. It is assumed that such a generation is unique, and the root level is defined to be 1.
Sample Input:
23 13
21 1 23
01 4 03 02 04 05
03 3 06 07 08
06 2 12 13
13 1 21
08 2 15 16
02 2 09 10
11 2 19 20
17 1 22
05 1 11
07 1 14
09 1 17
10 1 18
Sample Output:
9 4
1 #include <iostream> 2 #include <queue> 3 #include <vector> 4 using namespace std; 5 int N, M, maxN = 1, resL = 1, root = 1, level[105] = { 0 }, manN[105] = { 0 }; 6 vector<int>man[105]; 7 void BFS() 8 { 9 queue<int>q; 10 q.push(root); 11 level[root] = 1; 12 manN[level[root]]++; 13 while (!q.empty()) 14 { 15 root = q.front(); 16 q.pop(); 17 int temp = 0; 18 for (auto v : man[root]) 19 { 20 level[v] = level[root] + 1; 21 manN[level[v]]++;//记录每一层的人数 22 if (man[v].size() > 0) 23 q.push(v); 24 } 25 } 26 } 27 28 void DFS(int s,int l) 29 { 30 manN[l]++;//l层的人数 31 for (auto v : man[s]) 32 DFS(v, l + 1); 33 } 34 35 int main() 36 { 37 cin >> N >> M; 38 for (int i = 0; i < M; ++i) 39 { 40 int a, b, k; 41 cin >> a >> k; 42 for (int j = 0; j < k; ++j) 43 { 44 cin >> b; 45 man[a].push_back(b); 46 } 47 } 48 //BFS(); 49 DFS(1, 1); 50 for (int i = 1; i <= N; ++i) 51 { 52 if (maxN < manN[i]) 53 { 54 maxN = manN[i]; 55 resL = i; 56 } 57 } 58 cout << maxN << " " << resL << endl; 59 return 0; 60 }