同余与逆元

同余

  • 前置知识 ————扩展欧几里得定理

    • 什么是同余

      对于两个数a,b,它们对于p取模结果相同,那么就称a和b在对p取模意义下同余
    • 公式表达

      \(\color{red}{a≡b(mod)p}\)
    • 如何求一个数的同余

      利用扩展欧几里得定理
      我们将该公式转化一下 -> \(a%p == b%p\)
      再变一下 -> \(a%p - b%p == 0\)
      再变一下 -> \(a%p + (-b%p) ==0\)
      诶,这个时候我们可以发现这个和扩欧的公式好像啊\((ax+by==c)\)
      那么是不是将其看成扩欧就可以解决了呢
      事实是————是的
      但是我们知道可以用扩欧求出一个同余来了,但是好像还是不知道怎么求,也不知道同余可以干什么啊
      事实上,在平常的写题中没有系数的同余都是很少出现的,一般同余是这么出现的-----
      \(ax≡b%p\) 它会告诉你一个系数再让你去求解
      更特殊的,\(b\)会等于1,这个时候,就扯到逆元上了

      逆元

    • 什么是逆元

      形如\(ax≡1\ mod\ p\)\(x\)我们就称\(x\)\(a\)\(mod\ p\)意义下的一个逆元,即\(a\)乘以\(x\)\(mod\ p\)的答案是1
    • 逆元有什么用

      在部分对一个很大的数字取模防止答案爆\(long long\)以至于表达不出来的题目中,有时会发现会用到除法,可是用整数除法会有问题啊,那怎么办呢又是那怎么办呢
      这个时候逆元就派上用场了
      我们发现,\(ax\ mod\ p == 1\) 时,这个x等于 \(\frac{1}{a}\)时就是一个最明显的满足条件的逆元,可是\(\frac{1}{a}\)不是一个整数啊,那怎么办呢?
      实际上,一个数对于另一个数取模时,它的逆元是有无数个的,只不过\(\frac{1}{a}\)是最小的一个,也就是说,还会有\(ay \mod p == 1\)的存在,
      而这个时候,由于要对p取模,那么我们的a乘以x和乘以y的效果都是一样的,所以\(\frac{1}{a}\)可以被另一个常数y所代替,再想开一点,是不是所有的常数在对p取模时乘以\(\frac{1}{a}\)时都可以被y所代替呢, 由于p是不变的,所以这个结论是正确的
    • 如何求逆元

    • 求逆元有三种方式
      前面说过,有一种是可以用\(ex\_gcd\)来求的
      另外两种分别是费马小定理(有局限性,但是非常简单)和线性推逆元(线性的去求逆元,适用于大规模求逆元)

      • \(ax ≡ 1 mod\ b\)
      • \(ax % b == 1\)
      • \(ax - ax/b*b == 1\)
      • \(设y为ax/b,ax + (b(-y)) == 1\)
      • \(以下y为-y\)
      • \(ax + by == gcd(a,b)\)
      • 这个公式就可以套用扩欧了,下面再推一次扩欧
        \(gcd(a,b) == gcd(b,a\%b) == gcd(b,a-a/b*b)\)
        \(ax + by == gcd(b,a-a/b*b) == bx'+(a-a/b*b)y'\)
        \(ax + by == bx' + ay' - a/b*by'\)
        \(ax + by == ay' + b(x'-a/b*y')\)
        \(x = y',y = x' - a / b*y'\)
      由此,我们可以得出求一个数的逆元的公式了
      \(ex\_gcd(a,mod,ni,x)\)//\(a\)为要求的数的逆元,\(mod\)为模数,\(ni\)为逆元,\(x\)什么都不是
      \(ni=(ni+mod)%mod\);//防止负数
    • 总结

      • 同余是当两个数都模一个p它们的余数相同,那么我们就称这两个数同余
      • 逆元是同余的一种常见特殊情况
      • 对于求逆元,首先要知道逆元有什么用:
      • 逆元是在取模运算中可以用乘法代替除法的巧妙工具
    • code:

       void ex_gcd(int a,int b,int &x,int &y)
      {
          if (b==0){x=1,y=0;return;}
          ex_gcd(b,a%b,x,y);
          int tmp=x;
          x=y,y=tmp-a/b*y;
      }

转载于:https://www.cnblogs.com/Morning-Glory/p/9911223.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值