LOJ#6277. 数列分块入门 1

题目描述

给出一个长为 n 的数列,以及 n 个操作,操作涉及区间加法,单点查值。

输入格式

第一行输入一个数字 n。

第二行输入 n 个数字,第 i 个数字为 ai​​,以空格隔开。

接下来输入 n 行询问,每行输入四个数字 opt、l、r、c,以空格隔开。

若 opt=0,表示将位于 [l,r] 的之间的数字都加 c。

若 opt=1,表示询问 ar​​ 的值(l 和 c 忽略)。

输出格式

对于每次询问,输出一行一个数字表示答案。

样例
样例输入
4
1 2 2 3
0 1 3 1
1 0 1 0
0 1 2 2
1 0 2 0
样例输出
2
5
数据范围与提示

对于 100% 的数据,1n50000,2^31​​others、ans2^31​​1。

 

/*
    分块做法 复杂度O(n*sqrt(n))
*/
#include <bits/stdc++.h>

using namespace std;

const int maxn = 5e4+5;

int a[maxn],c[maxn];
int n,size,now,last;

int getBlock(int x){
    return (x - 1)/size + 1;//获得x在哪个块
}
int getStart(int x){
    return (x - 1) * size + 1;//获取第x块的开头元素
}

int main(){
    scanf("%d",&n);
    for(int i = 1;i <= n;i++){
        scanf("%d",&now);
        a[i] = now - last;
        last = now;//差分
    }
    size = sqrt(n);//每个块大小为sqrt(n)最优
    for(int i = 1;i <= n;i++){
        c[getBlock(i)] += a[i];//预处理每一个块
    }
    while(n--){
        int opt,l,r,p;
        scanf("%d%d%d%d",&opt,&l,&r,&p);
        if(opt == 0){
            a[l] += p;c[getBlock(l)] += p;
            a[r+1] -= p;c[getBlock(r+1)] -= p;//区间加
        }else{
            if(getBlock(r) == 1){//分r在第一个块和不在第一个块讨论
                int ans = 0;
                for(int i = 1;i <= r;i++){
                    ans += a[i];//如果在同一个块,直接暴力加
                }
                printf("%d\n",ans);
            }else{
                int ans = 0;
                for(int i = 1;i <= getBlock(r) - 1;i++){//枚举每一个完整的块
                    ans += c[i];//累加
                }
                for(int i = getStart(getBlock(r));i <= r;i++){//枚举单个元素
                    ans += a[i];//累加
                }
                printf("%d\n",ans);//点查询
            }
        }
    }
    return 0;
}
分块 差分思路
/*
    树状数组做法 复杂度O(nlogn)
*/

#include <bits/stdc++.h>

using namespace std;

const int maxn = 5e4+5;

int c[maxn],n,now,last;

int lowbit(int x){
    return x & -x;
}

void add(int x,int y){
    for(;x <= n;x += lowbit(x)) c[x] += y;
}

int query(int x){
    int res = 0;
    for(;x >= 1;x -= lowbit(x)) res += c[x];
    return res;
}//树状数组板子

int main(){
    scanf("%d",&n);
    for(int i = 1;i <= n;i++){
        scanf("%d",&now);
        add(i,now-last);
        last = now;//求差分
    }
    for(int i = 1;i <= n;i++){
        int opt,l,r,p;
        scanf("%d%d%d%d",&opt,&l,&r,&p);
        if(opt == 0){
            add(l,p);add(r+1,-p);//区间修改
        }else{
            printf("%d\n",query(r));//单点查询
        }
    }
    return 0;
}
树状数组
/*
    线段树做法 复杂度O(nlogn)
    直接用区间修改区间查询的板子就好了
*/

#include <cstdio>

#define lchild (o<<1)
#define rchild (o<<1|1)
#define ll long long

const int MAXN = 100000;

ll a[MAXN],sumv[MAXN<<2],addv[MAXN<<2];

inline void pushup(ll o)
{
    sumv[o] = sumv[lchild] + sumv[rchild];
}

inline void pushdown(ll o,ll l,ll r)
{
    ll mid=(l+r) >> 1;
    addv[lchild] += addv[o];addv[rchild] += addv[o];
    sumv[lchild] += addv[o] * (mid-l+1);sumv[rchild] += addv[o] * (r-mid);
    addv[o] = 0;
}

inline void build(ll o,ll l,ll r)
{
    addv[o] = 0;
    if(l == r) {sumv[o] = a[l];return;}
    int mid = (l+r) >> 1;
    build(lchild,l,mid);
    build(rchild,mid+1,r);
    pushup(o);
}

inline void adds(ll l,ll r,ll o,ll lli,ll rri,ll v)
{
    if(lli <= l && rri >= r)
    {
        sumv[o] += v*(r-l+1);addv[o] += v;return ;
    }
    int mid = (l+r) >> 1;
    pushdown(o,l,r);
    if(lli <= mid) adds(l,mid,lchild,lli,rri,v);
    if(rri > mid) adds(mid+1,r,rchild,lli,rri,v);
    pushup(o);
}

inline ll query(ll l,ll r,ll o,ll lli,ll rri)
{
    if(lli <= l && rri >= r)
    {
        return sumv[o];
    }
    ll mid = (l+r) >> 1,ans = 0;
    pushdown(o,l,r);
    if(lli <= mid) ans += query(l,mid,lchild,lli,rri);
    if(rri > mid) ans += query(mid+1,r,rchild,lli,rri);
    return ans;
}

int main()
{
    int n;
    scanf("%d",&n);
    for(int i = 1;i <= n;i++)
    scanf("%lld",&a[i]);
    build(1,1,n);
    for(int i = 1;i <= n;i++)
    {
        int opt,l,r,p;
        scanf("%d%d%d%d",&opt,&l,&r,&p);
        if(opt == 0){
                adds(1,n,1,l,r,p);
            }
            else{
                printf("%lld\n",query(1,n,1,r,r));
            }
    }
    return 0;
}
线段树

 

 

转载于:https://www.cnblogs.com/bryce02/p/9888238.html

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
在信号处理领域,DOA(Direction of Arrival)估计是一项关键技术,主要用于确定多个信号源到达接收阵列的方向。本文将详细探讨三种ESPRIT(Estimation of Signal Parameters via Rotational Invariance Techniques)算法在DOA估计中的实现,以及它们在MATLAB环境中的具体应用。 ESPRIT算法是由Paul Kailath等人于1986年提出的,其核心思想是利用阵列数据的旋转不变性来估计信号源的角度。这种算法相比传统的 MUSIC(Multiple Signal Classification)算法具有较低的计算复杂度,且无需进行特征值分解,因此在实际应用中颇具优势。 1. 普通ESPRIT算法 普通ESPRIT算法分为两个主要步骤:构造等效旋转不变系统和估计角度。通过空间平移(如延时)构建两个子阵列,使得它们之间的关系具有旋转不变性。然后,通过对子阵列数据进行最小二乘拟合,可以得到信号源的角频率估计,进一步转换为DOA估计。 2. 常规ESPRIT算法实现 在描述中提到的`common_esprit_method1.m`和`common_esprit_method2.m`是两种不同的普通ESPRIT算法实现。它们可能在实现细节上略有差异,比如选择子阵列的方式、参数估计的策略等。MATLAB代码通常会包含预处理步骤(如数据归一化)、子阵列构造、旋转不变性矩阵的建立、最小二乘估计等部分。通过运行这两个文件,可以比较它们在估计精度和计算效率上的异同。 3. TLS_ESPRIT算法 TLS(Total Least Squares)ESPRIT是对普通ESPRIT的优化,它考虑了数据噪声的影响,提高了估计的稳健性。在TLS_ESPRIT算法中,不假设数据噪声是高斯白噪声,而是采用总最小二乘准则来拟合数据。这使得算法在噪声环境下表现更优。`TLS_esprit.m`文件应该包含了TLS_ESPRIT算法的完整实现,包括TLS估计的步骤和旋转不变性矩阵的改进处理。 在实际应用中,选择合适的ESPRIT变体取决于系统条件,例如噪声水平、信号质量以及计算资源。通过MATLAB实现,研究者和工程师可以方便地比较不同算法的效果,并根据需要进行调整和优化。同时,这些代码也为教学和学习DOA估计提供了一个直观的平台,有助于深入理解ESPRIT算法的工作原理。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值