python数据标准化1002无标题,Scikit标准化互信息学习给我错误的值

我是Python新手,我试图看到两个不同信号之间的标准化互信息,不管我使用什么信号,我得到的结果总是1,我认为这是不可能的,因为信号是不同的,不是完全相关的。

我使用的是Normalized Mutual Information Function provided Scikit Learn:sklearn.metrics.normalized mutanalinfo评分(labels为true,labels为pred)。

下面是我使用的代码:from numpy.random import randn

from numpy import *

from matplotlib.pyplot import *

from sklearn.metrics.cluster import normalized_mutual_info_score as mi

import pandas as pd

def fzX(X):

''' z-scoring columns'''

if len(X.shape)>1:

'''X is matrix ... more vars'''

meanX=mean(X,0)

stdX=std(X,0)

stdX[stdX<1e-9]=0

zX=zeros(X.shape)

for i in range(X.shape[1]):

if stdX[i]>0:

zX[:,i]=(X[:,i]-meanX[i])/stdX[i]

else:

zX[:,i]=0

else:

'''X is vector ... more vars'''

meanX=mean(X)

stdX=std(X,0)

zX=(X-meanX)/stdX

return(zX,meanX,stdX)

def fMI(X):

'''vars in columns,

returns mut info of normalized data'''

zX,meanX,stdX=fzX(X)

n=X.shape[1]

Mut_Info=zeros((n,n))

for i in range(n):

for j in range(i,n):

Mut_Info[i,j]=mi(zX[:,i],zX[:,j])

Mut_Info[j,i]=Mut_Info[i,j]

plot(zX);show()

return(Mut_Info)

t=arange(0,100,0.1) # t=0:0.1:99.9

N=len(t) # number of samples in t

u=sin(2*pi*t)+(randn(N)*2)**2

y=(cos(2*pi*t-2))**2+randn(N)*2

X=zeros((len(u),2))

X[:,0]=u

X[:,1]=y

mut=fMI(X)

print mut

plot(X)

show()

你们以前有过类似的问题吗?你知道我做错了什么吗?

非常感谢您的奉献。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值