Boussinesq 近似及静压假定,内外模分离方法(附录A)

本文详细阐述了海洋动力学中应用的数学模型、近似方法和计算技巧,包括不可压缩流体控制方程、Boussinesq近似、Hydrostatic近似、模式分裂方法以及具体应用实例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

0.Formulation of the RANS equations [1]

不可压缩流体控制方程

\[\begin{array}{l l} \frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}+\frac{\partial w}{\partial z}=0 \cr \frac{Du}{Dt}-fv=-\frac{1}{\rho}\frac{\partial p}{\partial x}+\frac{\partial }{\partial z} N_z \frac{\partial u}{\partial z} + N_h\Delta u \cr \frac{Dv}{Dt}+fu=-\frac{1}{\rho}\frac{\partial p}{\partial y}+\frac{\partial }{\partial z} N_z \frac{\partial v}{\partial z} + N_h\Delta v \cr \frac{Dw}{Dt}=-\frac{1}{\rho}\frac{\partial p}{\partial z}-g+\frac{\partial }{\partial z} N_z \frac{\partial w}{\partial z} + N_h\Delta w \cr \end{array}\]
其中\(N_z\)为垂向涡粘系数,\(N_h\)为水平涡粘系数,分子粘性系数已忽略。

1.Boussinesq approximation

Boussinesq 近似假定密度在参考密度附近变化不大,即
\[\rho(\vec{x},t) = \rho_0 + \rho'(\vec{x},t)\]

将控制方程内除了重力之外,所有密度替换为参考密度\(\rho_0\),即

\[\begin{array}{l l} \frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}+\frac{\partial w}{\partial z}=0 \cr \rho_0\frac{Du}{Dt}-fv=-\frac{\partial p}{\partial x}+\rho_0(\frac{\partial }{\partial z} N_z \frac{\partial u}{\partial z} + N_h\Delta u) \cr \rho_0\frac{Dv}{Dt}+fu=-\frac{\partial p}{\partial y}+\rho_0(\frac{\partial }{\partial z} N_z \frac{\partial v}{\partial z} + N_h\Delta v) \cr \rho_0\frac{Dw}{Dt}=-\frac{\partial p}{\partial z}-\rho g+\rho_0(\frac{\partial }{\partial z} N_z \frac{\partial w}{\partial z} + N_h\Delta w) \cr \end{array}\]

2.Hydrostic approximation

静压假定包括

  1. 忽略垂向粘性
  2. 忽略垂向加速度

此时,垂向方程变为
\[\frac{\partial p}{\partial z} = -\rho g\]

注意,此时密度并非为参考密度,而是水体总密度。将动量方程沿垂向进行积分,得
\[p(x,y,z=z_0) = p_a(x,y) + \int_{z=z_0}^{\zeta(x,y)}\rho gdz\]

\(p_a(x,y)\)为自由表面处大气压强。

\(\rho(\vec{x},t) = \rho_0 + \rho'(\vec{x},t)\)代入方程,便可得到压力表达式
\[p(x,y,z=z_0) = p_a(x,y) + (-\rho_0gz_0 + \rho_0g\zeta(x,y) + \int_{z=z_0}^{\zeta(x,y)}\rho' gdz) \]
其中三项分别为正压项,动压项与斜压项。其中\(\rho'(x,y,z,t)\)根据状态方程求得。

Appendix A.Mode Splitting [1]

内外模分离方法主要目的是解决海洋模拟中水平计算最大时间步和垂向计算时间步不匹配的问题。

为了模拟表面重力波,根据CFL准则,最大时间步应满足
\[T_h\le \frac{\Delta x}{\sqrt{2gH}}\]
而垂向计算所需时间步仅需满足
\[T_z\le \frac{h_z^2}{2N_z}\]

一般情况下,T_z大约为T_z的10倍以上(FVCOM中推荐取10)。
因此,内外模分离方法主要是解决海洋模拟问题计算过程中,水平尺度和垂直尺度计算时间步不匹配问题。

在水平模拟过程中,由于表面重力波在沿水深方向变化不大,因此可采用垂向积分方程
\[\begin{array}{l l} \frac{\partial D\bar{u}}{\partial x} + \frac{\partial D\bar{v}}{\partial y} + \frac{\partial \zeta}{\partial t}=0 \cr \frac{\partial \bar{u}}{\partial t}+A_x -fv=-\frac{1}{\rho_0}\frac{\partial p_a}{\partial x} -g \frac{\partial \zeta}{\partial x} -B_x + C_x+ N_h\Delta \bar{u} \cr \frac{\partial \bar{v}}{\partial t}+A_y -fv=-\frac{1}{\rho_0}\frac{\partial p_a}{\partial y} -g \frac{\partial \zeta}{\partial y} -B_y + C_y + N_h\Delta \bar{v} \cr \end{array}\]

其中\(D=H+\zeta\)为总水深。
求解内模时将各层流速时将速度分解为
\[u = \bar{u}+u' ,\quad v = \bar{v}+v' \]
将原始动量方程与垂向积分动量方程作差,可得
\[\begin{array}{l l} \frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}+\frac{\partial w}{\partial z}=0 \cr \frac{\partial u'}{\partial t}+ u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y}+ w \frac{\partial u}{\partial z} - A_x -fv' = B_x - \frac{g}{\rho_0}\frac{\partial}{\partial x}\int_z^{\zeta}\rho'dz -C_x + N_h\Delta u' \cr \frac{\partial v'}{\partial t}+ u \frac{\partial v}{\partial x} + v \frac{\partial v}{\partial y}+ w \frac{\partial v}{\partial z} - A_y +fu' = B_y - \frac{g}{\rho_0}\frac{\partial}{\partial y}\int_z^{\zeta}\rho'dz -C_x + N_h\Delta v' \cr \end{array}\]

根据三个方程,便可求解各层水体流速\(u,v,w\)

Reference

[1] Kowalik Z, Murty T S. Numerical modeling of ocean dynamics[M]. World Scientific, 1993.

转载于:https://www.cnblogs.com/li12242/p/4996277.html

### FLUENT 中 Boussinesq 假设及其应用 在计算流体动力学(CFD)软件 ANSYS Fluent 中,Boussinesq 假设被广泛应用于处理自然对流问题。该假设简化了浮力效应的建,在密度变化较小的情况下特别有用。 #### 密度变化的影响 当温度差异引起的密度变化较小时,Boussinesq 假设认为除了重力项外,流体密度保持恒定。这意味着在动量方程中的惯性和粘性项中采用常数密度 \(\rho_0\) ,而在体积力(即重力)作用下则考虑随温度变化而改变的部分: \[ \rho = \rho_0 (1 - \beta(T-T_{ref})) \] 其中 \(T_{ref}\) 是参考温度,\(\beta=1/T_{ref}\) 表示热膨胀系数[^2]。 #### 实现方式 为了实现这一假设,在设置拟条件时需指定参考密度和参考温度,并启用能量方程来求解温度场。对于多相流动或多组分混合物的情况,则应通过定义物质属性函数或表格形式输入特定条件下各成分对应的物理参数。 #### 应用场景 此方法适用于低马赫数下的不可压缩流体系统,尤其是那些由于温差引发显著浮升力影响的情形,比如房间通风、电子设备散热分析等实际工程案例研究中非常普遍的应用领域。 ```python # Python伪代码展示如何配置FLUENT项目以使用Boussinesq近似 project.set_reference_temperature(298.15) # 设置参考温度为室温K material_properties.define_density_expression( "density = density_ref * (1 - beta*(temperature - temperature_ref))" ) solver.enable_energy_equation() # 启用能量方程解决温度分布 ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值