[VJ][数学]Pasha and Phone

Pasha and Phone 

Description

Pasha has recently bought a new phone jPager and started adding his friends' phone numbers there. Each phone number consists of exactly n digits.

Also Pasha has a number k and two sequences of length n / k (n is divisible by ka1, a2, ..., an / k and b1, b2, ..., bn / k. Let's split the phone number into blocks of length k. The first block will be formed by digits from the phone number that are on positions 1, 2,..., k, the second block will be formed by digits from the phone number that are on positions k + 1, k + 2, ..., k and so on. Pasha considers a phone number good, if the i-th block doesn't start from the digit bi and is divisible by ai if represented as an integer.

To represent the block of length k as an integer, let's write it out as a sequence c1c2,...,ck. Then the integer is calculated as the result of the expression c1·10k - 1 + c2·10k - 2 + ... + ck.

Pasha asks you to calculate the number of good phone numbers of length n, for the given kai and bi. As this number can be too big, print it modulo 109 + 7.

Input

The first line of the input contains two integers n and k (1 ≤ n ≤ 100 000, 1 ≤ k ≤ min(n, 9)) — the length of all phone numbers and the length of each block, respectively. It is guaranteed that n is divisible by k.

The second line of the input contains n / k space-separated positive integers — sequence a1, a2, ..., an / k (1 ≤ ai < 10k).

The third line of the input contains n / k space-separated positive integers — sequence b1, b2, ..., bn / k (0 ≤ bi ≤ 9).

Output

Print a single integer — the number of good phone numbers of length n modulo 109 + 7.

Examples

Input

6 2
38 56 49
7 3 4

Output

8

Input

8 2
1 22 3 44
5 4 3 2

Output

32400

Note

In the first test sample good phone numbers are: 000000, 000098, 005600, 005698, 380000, 380098, 385600, 385698.

 

描述:

有一个整数,整数的位数是n,把整数分为 n/k 块,保证 n/k 是整数。

总共有1—n/k 块,要使第 i 块是a[i]的倍数(包括0倍数),并且第一位不是b[i]。

求这样的整数有多少个。

分析:

刚开始写枚举每一块,使那一块的整数是a[i]的倍数,并且第一位不是b[i]。

有排列组合可知,答案就是每一块的个数相乘。

后来TLE了。

 1 #include<iostream>
 2 #include<cstdio>
 3 #include<cmath>
 4 #include<algorithm>
 5 #include<string>
 6 #include<cstring>
 7 using namespace std;
 8 long long ans=1,maxx=1;
 9 long long a[100010];
10 int b[100010];
11 int main()
12 {
13     int n,k;
14     cin>>n>>k;
15     for(int i=1;i<=n/k;i++)
16         cin>>a[i];
17     for(int i=1;i<=n/k;i++)
18         cin>>b[i];
19     for(int i=1;i<k;i++)
20         maxx*=10;
21     for(int i=1;i<=n/k;i++)
22     {
23         long long cnt=0;
24         for(int j=0; ;j++)
25         {
26             if(a[i]*j>=maxx*10)    break;
27             else{
28                 if(a[i]*j/maxx!=b[i])
29                     cnt++;
30                 else continue;
31             }
32         }
33         ans=ans*cnt;
34         ans=ans%1000000007;
35     }
36     cout<<ans<<endl;
37     return 0;
38 }
View Code
正确解法:

枚举每一块,每一块的最大数/a[i] 就是除了0倍数之外的倍数的个数。

每一块的最大数/10 /a[i]就是第一位是0倍数的个数

两个都加一代表00成立

再找出第一位是b[i]的块的个数

此时,若b[i]==0   num2!=num3,所以要特殊判断!

 1 #include<iostream>
 2 #include<cstdio>
 3 #include<cmath>
 4 #include<algorithm>
 5 #include<string>
 6 #include<cstring>
 7 using namespace std;
 8 long long ans=1,maxx=1;
 9 long long a[100010];
10 int b[100010];
11 int main()
12 {
13     int n,k;
14     cin>>n>>k;
15     for(int i=1;i<=n/k;i++)
16         cin>>a[i];
17     for(int i=1;i<=n/k;i++)
18         cin>>b[i];
19     for(int i=1;i<k;i++)
20         maxx*=10;
21     for(int i=1;i<=n/k;i++)
22     {
23         long long num1=(maxx*10-1)/a[i]+1;
24         long long num2=(maxx-1)/a[i]+1;
25         long long num3=(maxx*(b[i]+1)-1)/a[i]-(maxx*b[i]-1)/a[i];
26         if(b[i]==0)    ans*=num1-num2;
27         else ans*=num1-num3;
28         ans%=1000000007;
29     }
30     cout<<ans<<endl;
31     return 0;
32 }
View Code

 

转载于:https://www.cnblogs.com/Kaike/p/9885566.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值