【CF17E】Palisection(回文树)

【CF17E】Palisection(回文树)

题面

洛谷

题解

题意:
求有重叠部分的回文子串对的数量

所谓正难则反
求出所有不重叠的即可
求出以一个位置结束的回文串的数量
和以一个位置为开始的回文串的数量
然后对应的乘一下就行了
求法我用的是回文树
维护每个节点到根节点的距离,
就是回文后缀的数量

CF上的空间是\(128MB\)
卡的很
所以所有的连边考虑用邻接表来代替

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<set>
#include<map>
#include<vector>
#include<queue>
using namespace std;
#define ll long long
#define RG register
#define MAX 2000020
#define MOD 51123987
int n,p1[MAX],p2[MAX],ans,dep[MAX];
char s[MAX];
struct Line{int v,next,w;}e[MAX];
int cnt=1;
int h[MAX];
inline void Add(int u,int v,int w){e[cnt]=(Line){v,h[u],w};h[u]=cnt++;}
struct PT
{
    struct Node
    {
        int ff,len;
    }t[MAX];
    int tot,last;
    void init()
    {
        for(int i=0;i<=tot;++i)
        {
            h[i]=0;
            t[i].ff=t[i].len=0;
        }
        cnt=1;
        last=0;
        t[tot=1].len=-1;
        t[0].ff=t[1].ff=1;
    }
    int nt(int k,int c)
    {
        for(int i=h[k];i;i=e[i].next)
            if(e[i].w==c)return e[i].v;
        return 0;
    }       
    void extend(int c,int n,char *s)
    {
        int p=last;
        while(s[n-t[p].len-1]!=s[n])p=t[p].ff;
        if(!nt(p,c))
        {
            int v=++tot,k=t[p].ff;
            while(s[n-t[k].len-1]!=s[n])k=t[k].ff;
            t[v].len=t[p].len+2;
            t[v].ff=nt(k,c);
            dep[v]=dep[t[v].ff]+1;
            Add(p,v,c);
        }
        last=nt(p,c);
    }
}pt1;
int main()
{
    scanf("%d",&n);
    scanf("%s",s+1);
    pt1.init();
    for(int i=1;i<=n;++i)
    {
        pt1.extend(s[i]-97,i,s);
        ans=(ans+(p1[i]=dep[pt1.last]))%MOD;
    }
    ans=1ll*ans*(ans-1)/2%MOD;
    reverse(&s[1],&s[n+1]);
    memset(dep,0,sizeof(dep));
    pt1.init();
    for(int i=1;i<=n;++i)
    {
        pt1.extend(s[i]-97,i,s);
        p2[n-i+1]=dep[pt1.last];
    }
    for(int i=n;i;--i)(p2[i]+=p2[i+1])%=MOD;
    for(int i=1;i<=n;++i)ans=(ans-1ll*p1[i]*p2[i+1]%MOD+MOD)%MOD;
    printf("%d\n",ans);
    return 0;
}

转载于:https://www.cnblogs.com/cjyyb/p/8463531.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值