动态规划法解最长公共子序列问题

      [问题]一个给定序列的子序列是指在该序列中删除若干元素后所得的序列,但删除过程中不能打乱元素的顺序。例如序列{B,C,A,B}是序列X={A,B,C,B,D,A,B}与序列Y={B,D,C,A,B,A}的一个最长公共子序列。给定序列X={x1,x2,……,xm}与序列Y={y1,y2,……,yn},求其最长公共子序列的长度

      [解析]设序列X={x1,x2,……,xm}与序列Y={y1,y2,……,yn}的最长公共子序列为序列Z={z1,z2,……,zk},则有如下结论(均可由反证法证明)

       (1)若xm=yn, zk=xm=yn,且序列Zk-1是序列Xm-1和序列Yn-1的最长公共子序列

       (2)若xm≠yn, zk≠xm则序列Z是序列Xm-1和序列Y的最长公共子序列

       (3)若xm≠yn, zk≠yn则序列Z是序列X和序列Yn-1的最长公共子序列

       由此可知,该问题具有最优子结构性质。递推式如下:

       设序列X和序列Y的最长公共子序列的长度为f(m)(n),则

       (1)若xm=yn,则f(m)(n) = f(m-1)(n-1) + 1

       (2)若xm≠yn,则f(m)(n) = Max{f(m-1)(n),f(m)(n-1)}

 

      

 

转载于:https://www.cnblogs.com/laifeiyao/p/3478070.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值