动态规划法解最长公共子序列问题

          [问题]一个给定序列的子序列是指在该序列中删除若干元素后所得的序列,但删除过程中不能打乱元素的顺序。例如序列{B,C,A,B}是序列X={A,B,C,B,D,A,B}与序列Y={B,D,C,A,B,A}的一个最长公共子序列。给定序列X={x1,x2,……,xm}与序列Y={y1,y2,……,yn},求其最长公共子序列的长度

          [解析]设序列X={x1,x2,……,xm}与序列Y={y1,y2,……,yn}的最长公共子序列为序列Z={z1,z2,……,zk},则有如下结论(均可由反证法证明)

           (1)若xm=yn, zk=xm=yn,且序列Zk-1是序列Xm-1和序列Yn-1的最长公共子序列

           (2)若xm≠yn, zk≠xm则序列Z是序列Xm-1和序列Y的最长公共子序列

           (3)若xm≠yn, zk≠yn则序列Z是序列X和序列Yn-1的最长公共子序列

           由此可知,该问题具有最优子结构性质。递推式如下:

           设序列X和序列Y的最长公共子序列的长度为f(m)(n),则

           (1)若xm=yn,则f(m)(n) = f(m-1)(n-1) + 1

           (2)若xm≠yn,则f(m)(n) = Max{f(m-1)(n),f(m)(n-1)}

     

          

     

    转载于:https://www.cnblogs.com/laifeiyao/p/3478070.html

    评论
    添加红包

    请填写红包祝福语或标题

    红包个数最小为10个

    红包金额最低5元

    当前余额3.43前往充值 >
    需支付:10.00
    成就一亿技术人!
    领取后你会自动成为博主和红包主的粉丝 规则
    hope_wisdom
    发出的红包
    实付
    使用余额支付
    点击重新获取
    扫码支付
    钱包余额 0

    抵扣说明:

    1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
    2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

    余额充值

    举报

    选择你想要举报的内容(必选)
    • 内容涉黄
    • 政治相关
    • 内容抄袭
    • 涉嫌广告
    • 内容侵权
    • 侮辱谩骂
    • 样式问题
    • 其他
    点击体验
    DeepSeekR1满血版
    程序员都在用的中文IT技术交流社区

    程序员都在用的中文IT技术交流社区

    专业的中文 IT 技术社区,与千万技术人共成长

    专业的中文 IT 技术社区,与千万技术人共成长

    关注【CSDN】视频号,行业资讯、技术分享精彩不断,直播好礼送不停!

    关注【CSDN】视频号,行业资讯、技术分享精彩不断,直播好礼送不停!

    客服 返回顶部

    登录后您可以享受以下权益:

    ×