[问题]一个给定序列的子序列是指在该序列中删除若干元素后所得的序列,但删除过程中不能打乱元素的顺序。例如序列{B,C,A,B}是序列X={A,B,C,B,D,A,B}与序列Y={B,D,C,A,B,A}的一个最长公共子序列。给定序列X={x1,x2,……,xm}与序列Y={y1,y2,……,yn},求其最长公共子序列的长度
[解析]设序列X={x1,x2,……,xm}与序列Y={y1,y2,……,yn}的最长公共子序列为序列Z={z1,z2,……,zk},则有如下结论(均可由反证法证明)
(1)若xm=yn,则 zk=xm=yn,且序列Zk-1是序列Xm-1和序列Yn-1的最长公共子序列
(2)若xm≠yn,且 zk≠xm,则序列Z是序列Xm-1和序列Y的最长公共子序列
(3)若xm≠yn,且 zk≠yn,则序列Z是序列X和序列Yn-1的最长公共子序列
由此可知,该问题具有最优子结构性质。递推式如下:
设序列X和序列Y的最长公共子序列的长度为f(m)(n),则
(1)若xm=yn,则f(m)(n) = f(m-1)(n-1) + 1
(2)若xm≠yn,则f(m)(n) = Max{f(m-1)(n),f(m)(n-1)}