题目链接 2016 EC-Final
题意 现在要找到数列中连续两个子序列(没有公共部分)。要求这两个子序列本身内部没有重复出现的数。
求这两个子序列的长度的和的最大值。
首先预处理一下。令$f[i][j]$为$i$到$j$这段数字里面能找到的符合题意条件的区间的长度的最大值。
这段预处理时间复杂度$O(n^{2})$
然后$O(n^{2})$枚举第一个区间,如果出现重复的数字了那么的第二层循环break掉。
记当前枚举到的区间的长度为$s$
在刚刚枚举的基础上,考虑枚举到的这个区间的右边的这些数,如果某个数字在前面那个区间中出现过了,
那么这个位置标记$1$,否则标记$0$。
做一次$O(n)$的扫描,每次找到连续的最多的$0$的区间,记为$c_{x}...c_{y}$
用$s + f[x][y]$更新答案
若当前枚举能得到的最优答案小于已经得到的答案了,那么就直接输出。
时间复杂度$O(n^{3})$
#include <bits/stdc++.h>
using namespace std;
#define rep(i, a, b) for (int i(a); i <= (b); ++i)
#define dec(i, a, b) for (int i(a); i >= (b); --i)
const int N = 1e3 + 3;
int f[N][N], a[N], b[N];
int T, n, cnt, ans, ca = 0;
bitset <N> tmp, bit;
vector <int> v[N];
int main(){
scanf("%d", &T);
while (T--){
scanf("%d", &n);
rep(i, 1, n) scanf("%d", a + i), b[i] = a[i];
sort(b + 1, b + n + 1);
cnt = unique(b + 1, b + n + 1) - b - 1;
rep(i, 1, n) a[i] = lower_bound(b + 1, b + cnt + 1, a[i]) - b;
rep(i, 1, n) v[i].clear();
rep(i, 1, n) v[a[i]].push_back(i);
rep(i, 0, n + 1) rep(j, 0, n + 1) f[i][j] = 0;
rep(i, 1, n){
tmp.reset();
rep(j, i, n){
if (tmp[a[j]]) break;
tmp.set(a[j]);
f[i][j] = j - i + 1;
}
}
ans = 0;
dec(i, n - 1, 1) rep(j, i + 1, n) f[i][j] = max(f[i][j], max(f[i + 1][j], f[i][j - 1]));
rep(i, 1, n){
if (n - i + 1 <= ans) break;
tmp.reset();
bit.reset();
rep(j, i, n){
if (tmp[a[j]]) break;
tmp.set(a[j]);
for (auto u : v[a[j]]) bit.set(u);
int now = 0;
int l = j + 1;
rep(r, j + 1, n) if (!bit[r]) now = max(now, f[l][r]); else l = r + 1;
if (j - i + 1 + now > ans){
ans = j - i + 1 + now;
}
}
}
printf("Case #%d: %d\n", ++ca, ans);
}
return 0;
}