二叉搜索树 java_二叉查找树之 Java的实现【下】

/**

* Java 语言: 二叉查找树

*

* @author skywang

* @date 2013/11/07

*/

public class BSTree>{

private BSTNode mRoot;    // 根结点

public class BSTNode>{

T key;                // 关键字(键值)

BSTNode left;    // 左孩子

BSTNode right;    // 右孩子

BSTNode parent;    // 父结点

public BSTNode(T key, BSTNode parent, BSTNode left, BSTNode right){

this.key = key;

this.parent = parent;

this.left = left;

this.right = right;

}

public T getKey(){

return key;

}

public String toString(){

return "key:"+key;

}

}

public BSTree(){

mRoot=null;

}

/*

* 前序遍历"二叉树"

*/

private void preOrder(BSTNode tree){

if(tree != null) {

System.out.print(tree.key+" ");

preOrder(tree.left);

preOrder(tree.right);

}

}

public void preOrder(){

preOrder(mRoot);

}

/*

* 中序遍历"二叉树"

*/

private void inOrder(BSTNode tree){

if(tree != null) {

inOrder(tree.left);

System.out.print(tree.key+" ");

inOrder(tree.right);

}

}

public void inOrder(){

inOrder(mRoot);

}

/*

* 后序遍历"二叉树"

*/

private void postOrder(BSTNode tree){

if(tree != null)

{

postOrder(tree.left);

postOrder(tree.right);

System.out.print(tree.key+" ");

}

}

public void postOrder(){

postOrder(mRoot);

}

/*

* (递归实现)查找"二叉树x"中键值为key的节点

*/

private BSTNode search(BSTNode x, T key){

if (x==null)

return x;

int cmp = key.compareTo(x.key);

if (cmp < 0)

return search(x.left, key);

else if (cmp > 0)

return search(x.right, key);

else

return x;

}

public BSTNode search(T key){

return search(mRoot, key);

}

/*

* (非递归实现)查找"二叉树x"中键值为key的节点

*/

private BSTNode iterativeSearch(BSTNode x, T key){

while (x!=null) {

int cmp = key.compareTo(x.key);

if (cmp < 0)

x = x.left;

else if (cmp > 0)

x = x.right;

else

return x;

}

return x;

}

public BSTNode iterativeSearch(T key){

return iterativeSearch(mRoot, key);

}

/*

* 查找最小结点:返回tree为根结点的二叉树的最小结点。

*/

private BSTNode minimum(BSTNode tree){

if (tree == null)

return null;

while(tree.left != null)

tree = tree.left;

return tree;

}

public T minimum(){

BSTNode p = minimum(mRoot);

if (p != null)

return p.key;

return null;

}

/*

* 查找最大结点:返回tree为根结点的二叉树的最大结点。

*/

private BSTNode maximum(BSTNode tree){

if (tree == null)

return null;

while(tree.right != null)

tree = tree.right;

return tree;

}

public T maximum(){

BSTNode p = maximum(mRoot);

if (p != null)

return p.key;

return null;

}

/*

* 找结点(x)的后继结点。即,查找"二叉树中数据值大于该结点"的"最小结点"。

*/

public BSTNode successor(BSTNode x){

// 如果x存在右孩子,则"x的后继结点"为 "以其右孩子为根的子树的最小结点"。

if (x.right != null)

return minimum(x.right);

// 如果x没有右孩子。则x有以下两种可能:

// (01) x是"一个左孩子",则"x的后继结点"为 "它的父结点"。

// (02) x是"一个右孩子",则查找"x的最低的父结点,并且该父结点要具有左孩子",找到的这个"最低的父结点"就是"x的后继结点"。

BSTNode y = x.parent;

while ((y!=null) && (x==y.right)) {

x = y;

y = y.parent;

}

return y;

}

/*

* 找结点(x)的前驱结点。即,查找"二叉树中数据值小于该结点"的"最大结点"。

*/

public BSTNode predecessor(BSTNode x){

// 如果x存在左孩子,则"x的前驱结点"为 "以其左孩子为根的子树的最大结点"。

if (x.left != null)

return maximum(x.left);

// 如果x没有左孩子。则x有以下两种可能:

// (01) x是"一个右孩子",则"x的前驱结点"为 "它的父结点"。

// (01) x是"一个左孩子",则查找"x的最低的父结点,并且该父结点要具有右孩子",找到的这个"最低的父结点"就是"x的前驱结点"。

BSTNode y = x.parent;

while ((y!=null) && (x==y.left)) {

x = y;

y = y.parent;

}

return y;

}

/*

* 将结点插入到二叉树中

*

* 参数说明:

*     tree 二叉树的

*     z 插入的结点

*/

private void insert(BSTree bst, BSTNode z){

int cmp;

BSTNode y = null;

BSTNode x = bst.mRoot;

// 查找z的插入位置

while (x != null) {

y = x;

cmp = z.key.compareTo(x.key);

if (cmp < 0)

x = x.left;

else

x = x.right;

}

z.parent = y;

if (y==null)

bst.mRoot = z;

else {

cmp = z.key.compareTo(y.key);

if (cmp < 0)

y.left = z;

else

y.right = z;

}

}

/*

* 新建结点(key),并将其插入到二叉树中

*

* 参数说明:

*     tree 二叉树的根结点

*     key 插入结点的键值

*/

public void insert(T key){

BSTNode z=new BSTNode(key,null,null,null);

// 如果新建结点失败,则返回。

if (z != null)

insert(this, z);

}

/*

* 删除结点(z),并返回被删除的结点

*

* 参数说明:

*     bst 二叉树

*     z 删除的结点

*/

private BSTNode remove(BSTree bst, BSTNode z){

BSTNode x=null;

BSTNode y=null;

if ((z.left == null) || (z.right == null) )

y = z;

else

y = successor(z);

if (y.left != null)

x = y.left;

else

x = y.right;

if (x != null)

x.parent = y.parent;

if (y.parent == null)

bst.mRoot = x;

else if (y == y.parent.left)

y.parent.left = x;

else

y.parent.right = x;

if (y != z)

z.key = y.key;

return y;

}

/*

* 删除结点(z),并返回被删除的结点

*

* 参数说明:

*     tree 二叉树的根结点

*     z 删除的结点

*/

public void remove(T key){

BSTNode z, node;

if ((z = search(mRoot, key)) != null)

if ( (node = remove(this, z)) != null)

node = null;

}

/*

* 销毁二叉树

*/

private void destroy(BSTNode tree){

if (tree==null)

return ;

if (tree.left != null)

destroy(tree.left);

if (tree.right != null)

destroy(tree.right);

tree=null;

}

public void clear(){

destroy(mRoot);

mRoot = null;

}

/*

* 打印"二叉查找树"

*

* key        -- 节点的键值

* direction  --  0,表示该节点是根节点;

*               -1,表示该节点是它的父结点的左孩子;

*                1,表示该节点是它的父结点的右孩子。

*/

private void print(BSTNode tree, T key, int direction){

if(tree != null) {

if(direction==0)    // tree是根节点

System.out.printf("%2d is rootn", tree.key);

else                // tree是分支节点

System.out.printf("%2d is %2d's %6s childn",

tree.key, key, direction==1?"right" : "left");

print(tree.left, tree.key, -1);

print(tree.right,tree.key,  1);

}

}

public void print(){

if (mRoot != null)

print(mRoot, mRoot.key, 0);

}

}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值