解题思路:给出一列数an,再给出一个矩阵d[i][j],在满足d[i][j]=1的情况下,称a[i]和a[j]可以交换,问经过交换最后得到字典序最小的数列a[n]
首先是贪心的思想,大的能换就换到后面去,这样尽可能使小的在前面。
然后是判断a[i]和a[j]能不能交换, 如果d[i][j]=1,表示a[i]和a[j]可直接交换 如果d[i][k]=1&&d[k][j]=1,表示a[i]可以通过a[k]和a[j]交换
比如 1 7 3 4 2 5 假如 7能和4交换,4能和2交换,那么7也能和2交换
处理矩阵的时候用到了紫书中的传递闭包
for(k=1;k<=n;k++) for(i=1;i<=n;i++) for(j=1;j<=n;j++) d[i][j]=d[i][j]||(d[i][k]&&d[k][j]);
User ainta has a permutation p1, p2, ..., pn. As the New Year is coming, he wants to make his permutation as pretty as possible.
Permutation a1, a2, ..., an is prettier than permutation b1, b2, ..., bn, if and only if there exists an integer k (1 ≤ k ≤ n) where a1 = b1, a2 = b2, ..., ak - 1 = bk - 1 and ak < bk all holds.
As known, permutation p is so sensitive that it could be only modified by swapping two distinct elements. But swapping two elements is harder than you think. Given an n × n binary matrix A, user ainta can swap the values of pi and pj (1 ≤ i, j ≤ n, i ≠ j) if and only if Ai, j = 1.
Given the permutation p and the matrix A, user ainta wants to know the prettiest permutation that he can obtain.
The first line contains an integer n (1 ≤ n ≤ 300) — the size of the permutation p.
The second line contains n space-separated integers p1, p2, ..., pn — the permutation p that user ainta has. Each integer between 1and n occurs exactly once in the given permutation.
Next n lines describe the matrix A. The i-th line contains n characters '0' or '1' and describes the i-th row of A. The j-th character of thei-th line Ai, j is the element on the intersection of the i-th row and the j-th column of A. It is guaranteed that, for all integers i, j where 1 ≤ i < j ≤ n, Ai, j = Aj, i holds. Also, for all integers i where 1 ≤ i ≤ n, Ai, i = 0 holds.
In the first and only line, print n space-separated integers, describing the prettiest permutation that can be obtained.
7 5 2 4 3 6 7 1 0001001 0000000 0000010 1000001 0000000 0010000 1001000
1 2 4 3 6 7 5
5 4 2 1 5 3 00100 00011 10010 01101 01010
1 2 3 4 5
In the first sample, the swap needed to obtain the prettiest permutation is: (p1, p7).
In the second sample, the swaps needed to obtain the prettiest permutation is (p1, p3), (p4, p5), (p3, p4).
A permutation p is a sequence of integers p1, p2, ..., pn, consisting of n distinct positive integers, each of them doesn't exceed n. Thei-th element of the permutation p is denoted as pi. The size of the permutation p is denoted as n.
#include<stdio.h>
#include<algorithm>
using namespace std;
int a[1010],d[1010][1010];
char s[1020];
int main()
{
int n,i,j,k;
scanf("%d",&n);
for(i=1;i<=n;i++) scanf("%d",&a[i]);
for(i=1;i<=n;i++)
{
scanf("%s",&s);
for(j=0;j<n;j++)
{
if(s[j]=='1') d[i][j+1]=1;
else d[i][j+1]=0;
}
}
for(k=1;k<=n;k++)
for(i=1;i<=n;i++)
for(j=1;j<=n;j++)
d[i][j]=d[i][j]||(d[i][k]&&d[k][j]);
for(i=1;i<=n;i++)
{
for(j=i+1;j<=n;j++)
{
if(d[i][j]&&a[i]>a[j])
swap(a[i],a[j]);
}
}
for(i=1;i<n;i++)
printf("%d ",a[i]);
printf("%d\n",a[i]);
}