随着大数据的盛行,Hadoop也流行起来。面过一些公司,包括开发Hadoop :如Cloudera, Hortonworks, MapR, Teradata, Greenplum, Amazon EMR, 使用Hadoop的除了Google,数不胜数了.
Hadoop 2.0转型基本无可阻挡,今年下半年要正式发布了,它的出现让大家知识体系都 要更新了。Hadoop1.0搞了8年才发布,2.0不到2年就出来了。2.0的核心是YARN,它的 诞生还是有趣的故事
YARN介绍 Hadoop 生态系统 SQL on Hadoop
“Hadoop: The Definitive Guide”: 里面内容非常好,既有高屋建瓴,又有微观把握,基本适用于1.X版本。比如mapreduce各个子阶段,Join在里面也有代码实现,第三版
Google的三辆马车,GFS, MapReduce, BigTable Google的新三辆马车:Caffeine、Pregel、Dremel
SIGMOD, VLDB Top DB conference
入门:
- 知道MapReduce大致流程,Map, Shuffle, Reduce
- 知道Combiner, partition作用,设置Compression
- 搭建Hadoop集群,Master/Slave 都运行那些服务 NameNode, DataNode, JobTracker, TaskTracker
- Pig, Hive 简单语法,UDF写法
- When to use Pig Latin versus Hive SQL?
- Online Feedback Publishing System
- Introduction to Apache Hive Online Training
- http://i.stanford.edu/~ragho/hive-icde2010.pdf
Hadoop 2.0新知识; HDFS2 HA,Snapshot, ResourceManager,ApplicationsManager, NodeManager
进阶:
-
HDFS,Replica如何定位
-
Hadoop 参数调优,性能优化,Cluster level: JVM, Map/Reduce Slots, Job level: Reducer #, Memory, use Combiner? use Compression?
-
Hadoop Summit 2010 Tuning Hadoop To Deliver Performance To Your Application
- HBase 搭建,Region server, key如何选取?
- 数据倾斜怎么办?
- 字典同位词
- 翻译SQL语句 select count(x) from a group by b;
- MapReduce Algorithms
- Designing algorithms for Map Reduce
关注Cloudera, Hortonworks, MapR
相关系统-
数据流系统: Storm
-
内存计算系统: Spark and Shark
-
交互式实时系统:Cloudera Impala, Apache Drill (Dremel开源实现),Tez (Hortonworks)
- Hadoop进化目标:开发部署傻瓜化,性能更强劲,最后为程序员标配。
- 核心都是被寡头控制的,记得一边文章说一流的公司卖标准,二流的公司卖技术,三 流的公司卖产品,H和C有最多的committer,自然就影响着整个Hadoop社区。
- 技术就是日新月异,还是多看看那些公司的博客,关注感兴趣的新产品,Hortonworks Stack
- 在Hadoop系统中从头裸写MapReduce不现实了,ETL基本靠Hive,Pig, 还有Cascading,Scalding
- MapReduce并不是最优的,仅适合批处理,很多问题:JVM的启动overhead很大,小 Job更明显,数据必须先存储,不适合迭代计算,延迟高。DB学术圈讨论很久tradeoff 了,MapReduce: 一个巨大的倒退