LeetCode - Best Time to Buy and Sell Stock

Best Time to Buy and Sell Stock

2014.23.56

Say you have an array for which the ith element is the price of a given stock on day i.

If you were only permitted to complete at most one transaction (ie, buy one and sell one share of the stock), design an algorithm to find the maximum profit.

Solution:

  To maximize the profit, you have to buy low and sell high, and profit from the margin.

  Let f[n] be the maximum profit you can get by selling on the nth day, then f[n] = price[n] - min(price[0], price[1], ..., price[n - 1]);

  There're two rules:

    1. You would always buy at the lowest price possible.

    2. You must buy before you sell something.

  Just write down what you think with code. You can also think in a reversed manner. It would produce different code, but same outcome.

  Time complexity is O(n), space complexity is O(1).

Accepted code:

 1 class Solution {
 2 public:
 3     int maxProfit(vector<int> &prices) {
 4         // IMPORTANT: Please reset any member data you declared, as
 5         // the same Solution instance will be reused for each test case.
 6         int max_value;
 7         int max_profit;
 8         
 9         if(prices.size() <= 0){
10             return 0;
11         }
12         
13         int i, n;
14         
15         n = prices.size();
16         for(i = n - 1; i >= 0; --i){
17             if(i == n - 1){
18                 max_value = prices[i];
19                 max_profit = 0;
20             }else{
21                 if(prices[i] > max_value){
22                     max_value = prices[i];
23                 }
24                 if(max_value - prices[i] > max_profit){
25                     max_profit = max_value - prices[i];
26                 }
27             }
28         }
29         
30         return max_profit;
31     }
32 };

 

转载于:https://www.cnblogs.com/zhuli19901106/p/3512977.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值