Rectangle
Time Limit: 1000ms
Memory Limit: 65536KB
64-bit integer IO format:
%lld Java class name: Main
frog has a piece of paper divided into
n rows and m columns. Today, she would like to draw a rectangle whose perimeter is not greater than k.
There are
8 (out of 9) ways when n=m=2,k=6
Find the number of ways of drawing.
Input
The input consists of multiple tests. For each test:
The first line contains
3 integer n,m,k (1≤n,m≤5⋅104,0≤k≤109).
Output
For each test, write
1 integer which denotes the number of ways of drawing.
Sample Input
2 2 6 1 1 0 50000 50000 1000000000
Sample Output
8 0 1562562500625000000
有技巧的暴力搜索方法:
设总方格长和宽分别为n,m,一个长为i,宽为j(j 可以大于i,这里只是为了与总方格相对应)的矩形,可以找到有(n-i+1)*(m-j+1)个这样的矩形。
并且, i <= min(n,k-1), 取过i后,j <= min(m,k-i);有i = (1 ~ min(n,k-1)),j = (1~min(m,k-i));所以可以通过枚举i,并且由于j的值符合等差级数,可以通过“首项加末项乘以项数除以二”快速求得j。
所有,sum[i] = (n-i+1),sum[j] = ( (m-1+1)+(m-j+1) ) * j / 2 ; ans += sum[i]*sum[j],即得。
#include<cstdio> #include<iostream> #include<cstring> #include<algorithm> #define ll long long//BNUOJ似乎不识别__int64; using namespace std; int main(){ ll n,m,k; while(~scanf("%I64d%I64d%I64d",&n,&m,&k)){ k /= 2; ll ans = 0; ll nn = min(n,k-1); for(ll i = 1; i <= nn; i++){ ll j = min(m,k - i); ans += (n - i + 1)*(m + m - j + 1)*j/2; } cout<<ans<<endl;//printf("%I64d\n",ans); is WA ,I don't konw why! } return 0; }