- 先把边权搞成点权(其实也可以不用),那么就是询问树上路径的最大权值.
- 任意时刻权值非负的限制可以不用管,因为若走路径 \(u\to v\) ,走到 \(w\) 权值为负数了,那么直接从 \(w\) 下一个点开始走显然更优.这个限制是多余的.
- 那么问题就很简单了,经典 \(dp\) 做法,记 \(f(i)\) 为 \(i\) 子树内一点到 \(i\) 所有路径中的最大权值, \(O(n)\) 即可解决问题.
#include<bits/stdc++.h>
using namespace std;
#define ll long long
#define mp make_pair
#define pii pair<int,int>
inline int read()
{
int x=0;
bool pos=1;
char ch=getchar();
for(;!isdigit(ch);ch=getchar())
if(ch=='-')
pos=0;
for(;isdigit(ch);ch=getchar())
x=x*10+ch-'0';
return pos?x:-x;
}
const int MAXN=6e5+10;
int cnt,head[MAXN],to[MAXN<<1],nx[MAXN<<1];
int w[MAXN];
inline void addedge(int u,int v)
{
++cnt;
to[cnt]=v;
nx[cnt]=head[u];
head[u]=cnt;
swap(u,v);
++cnt;
to[cnt]=v;
nx[cnt]=head[u];
head[u]=cnt;
}
int n;
ll f[MAXN];
ll ans=0;
void upd(ll x,ll &mx,ll &sc)
{
if(x>=mx)
sc=mx,mx=x;
else if(x>sc)
sc=x;
}
void dfs(int u,int fa)
{
ll mx=0,sc=0;
for(int i=head[u];i;i=nx[i])
{
int v=to[i];
if(v==fa)
continue;
dfs(v,u);
upd(f[v],mx,sc);
}
f[u]=mx+w[u];
ans=max(mx+sc+w[u],ans);
}
int main()
{
n=read();
for(int i=1;i<=n;++i)
w[i]=read();
for(int i=1;i<n;++i)
{
int u=read(),v=read();
addedge(u,i+n);
addedge(v,i+n);
w[i+n]=-1*read();
}
dfs(1,0);
cout<<ans<<endl;
return 0;
}