1083A - The Fair Nut and the Best Path(树形DP)

这篇博客探讨了一种树形动态规划(DP)的解题方法,用于解决如何在消耗一定代价的同时最大化从一个节点到另一个节点的价值。问题中,每个节点和边都有各自的值,目标是找到最佳路径以获得最大总价值。作者通过初始化节点价值并自底向上进行DFS递归更新,来确定最优解,并强调在无法直接保存最优路径的情况下,可以使用变量记录过程中的最大价值。
摘要由CSDN通过智能技术生成

题意:每个节点都有自己的价值,从一个节点走到另一个节点会消耗固定值,但也会得到这个节点的价值,问怎样走才能得到最大的价值。

思路:利用树形结构进行dp,初始化每个点的价值为自身价值,对于每个节点都判断更新它的值或者不更新,从底向上进行dfs递归,更新出最优ans,从一个节点到另一个节点的收益为(目标节点价值-路上消耗的价值)

题意:到达一个点的到这个点的价值,经过一个边花费这个边的价值,求得到的最大价值

题解:dp[i] 保存从i 节点开始走向子节点得到的最大价值,每走一个子代更新一下 结果 和 dp[i] 即可

#include<bits/stdc++.h>
using namespace std;
//string s[210];
//bool vis[110];
typedef long long ll;
const int maxn = 3e5 + 5;
std::vector<pair<ll,ll> > v[maxn];
int val[maxn],n;
ll dp[maxn
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值