51 nod 1118 机器人走方格

本文介绍了一个使用C++实现的动态规划算法,用于解决从起点到终点的不同路径数量计算问题。通过初始化二维数组dp,并设置边界条件,递推公式为dp[i][j] = (dp[i-1][j] + dp[i][j-1]) % mod,最终输出dp[n][m]即为答案。
摘要由CSDN通过智能技术生成
 1 #include <iostream>
 2 using namespace std;
 3 long long dp[1001][1001];
 4 const long long mod=1e9+7;
 5 int main()
 6 {
 7     int n,m;
 8     cin>>n>>m;
 9     for(int i=1;i<=n;i++) dp[i][1]=1;
10     for(int j=1;j<=m;j++) dp[1][j]=1;
11     for(int i=2;i<=n;i++){
12         for(int j=2;j<=m;j++){
13             dp[i][j]=(dp[i-1][j]+dp[i][j-1])%mod;
14         }
15     }
16     cout<<dp[n][m]<<endl;
17     return 0;
18 }
View Code

 

转载于:https://www.cnblogs.com/fjqfjq/p/9021662.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值