浅谈CDQ分治与偏序问题

初识CDQ分治

CDQ分治是一个好东西,一直听着dalao们说所以就去学了下。

CDQ分治是我们处理各类问题的重要武器。它的优势在于可以顶替复杂的高级数据结构,而且常数比较小;缺点在于必须离线操作。 ——by __stdcall

其实CDQ分治名字听上去很高大上,其实和一般的分治没有特别大的区别,其大体流程如下:

  1. 将问题抽象为一个区间\([l,r]\)内的问题(废话)
  2. 分:将问题分解成左\([l,mid]\)\([mid+1,r]\)两部分,然后递归操作
  3. 治:合并两个子问题,同时考虑到\([l,mid]\)内的修改对\([mid+1,r]\)内的查询产生的影响。即,用左边的子问题帮助解决右边的子问题。

这里特别注意CDQ分治与一般分治的区别:普通分治在合并两个子问题的过程中,左右区间内的问题不会互相影响。


经典应用——三维偏序

我们从一道模板题来看看CDQ的具体实现:Luogu P3810

首先考虑经典的二维偏序:逆序对

这个鬼东西不是就一个归并排序or权值树状数组的事情么

我们想一下归并排序的原理,在归并的过程中(数组已经有序),那么我左边的并且坐标大于右边的坐标个数其实就是逆序对个数。

因此这也算是个简单的CDQ吧

现在我们考虑三维偏序,我们考虑先对数组总体排个序,这样在操作的过程中总有\(a_i\le a_j(i<j)\)(即使我们将区间一分为二那么右边的数的\(a_i\)始终大于左边。

然后对于第二维\(y_i\),我们考虑一下处理方法。

假设现在处理区间\([l,r]\),而此前我们已经通过递归处理好了\([l,mid]\)\([mid+1,r]\)的答案。

那我们把\([l,mid]\)\([mid+1,r]\)分别按\(y_i\)排个序,这样第二维也有了上面的性质。

再考虑怎么计算左边和右边的偏序关系,我们可以维护两个指针\(i,j\),每次我们将\(j\)后移一位以表示再加入一个数,此时若\(y_i\le y_j\)则不断后移\(i\),并且将\(z_i\)加入权值树状数组。

然后现在对于右边的每一个数:

  • 在权值树状数组上所有的数的\(x_i\)都小于它(因为排了序)
  • 在权值树状数组上所有的数的\(y_i\)都小于它(因为上面的指针偏移统计)

那么只要找\(z_i\)小于它的数个数即可,这个我们直接在树状数组上找即可。

复杂度是比较迷的\(O(n\log n)\),不过由于CQD的常数很小所以可以轻松跑过缅怀各位写树套树的dalao

下面上CODE

#include<cstdio>
#include<cctype>
#include<algorithm>
using namespace std;
const int N=100005;
struct data
{
    int x,y,z,num,sum;
    bool operator ==(const data &s) const { return x==s.x&&y==s.y&&z==s.z; }
}a[N],q[N];
int n,cnt,m,bit[N<<1],ans[N],tot;
inline char tc(void)
{
    static char fl[100000],*A=fl,*B=fl;
    return A==B&&(B=(A=fl)+fread(fl,1,100000,stdin),A==B)?EOF:*A++;
}
inline void read(int &x)
{
    x=0; char ch; int flag=1; while (!isdigit(ch=tc())) flag=ch^'-'?1:-1;
    while (x=(x<<3)+(x<<1)+ch-'0',isdigit(ch=tc())); x*=flag;
}
inline void write(int x)
{
    if (x>9) write(x/10);
    putchar(x%10+'0');
}
inline bool cmpx(data a,data b)
{
    if (a.x==b.x&&a.y==b.y) return a.z<b.z;
    if (a.x==b.x) return a.y<b.y; return a.x<b.x;
}
inline bool cmpy(data a,data b)
{
    if (a.y==b.y) return a.z<b.z; return a.y<b.y;
}
inline int lowbit(int x)
{
    return x&-x;
}
inline void add(int x,int y)
{
    for (;x<=m;x+=lowbit(x)) bit[x]+=y;
}
inline int get(int x)
{
    int res=0; for (;x;x-=lowbit(x)) res+=bit[x]; return res;
}
inline void CDQ(int l,int r)
{
    if (l==r) return; int mid=l+r>>1,id=l;
    CDQ(l,mid); CDQ(mid+1,r); sort(q+l,q+mid+1,cmpy); sort(q+mid+1,q+r+1,cmpy);
    for (register int i=mid+1;i<=r;++i)
    {
        while (id<=mid&&q[id].y<=q[i].y) add(q[id].z,q[id].num),++id; q[i].sum+=get(q[i].z);
    }
    for (register int i=l;i<id;++i) add(q[i].z,-q[i].num);
}
int main()
{
    //freopen("CODE.in","r",stdin); freopen("CODE.out","w",stdout);
    register int i; read(n); read(m);
    for (i=1;i<=n;++i) read(a[i].x),read(a[i].y),read(a[i].z);
    for (sort(a+1,a+n+1,cmpx),a[n+1]=(data){-1,-1,-1},i=cnt=1;i<=n;++i)
    if (a[i]==a[i+1]) ++cnt; else q[++tot]=a[i],q[tot].num=cnt,cnt=1;
    for (CDQ(1,tot),i=1;i<=tot;++i) ans[q[i].sum+q[i].num-1]+=q[i].num;
    for (i=0;i<n;++i) write(ans[i]),putchar('\n'); return 0;
}

关于更复杂的问题

其实我也不会,不过对于一般的高维偏序,我们可以CDQ套CDQ,反正一般k维偏序用CDQ的复杂度就是\(O(n\log^{k-1} n)\)

因此维数太大时还是使用K-d tree

转载于:https://www.cnblogs.com/cjjsb/p/9538595.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值