Cytoscape——实例

本文介绍如何使用Cytoscape软件绘制生物网络图,支持*.sif、xgmml及*.txt等格式。通过导入网络文件net.txt及节点属性文件node.txt,设置节点属性,最终导出完整的网络图。

本文将具体操作怎样用Cytoscape绘制网络图


Cytoscape所支持的数据格式:
1.*.sif格式:
  nodeA<interaction>nodeB
  nodeC<interaction>nodeD
  …
即文件分为三列,第一列和第三列是有相互作用关系的基因名或蛋白质名等,第二列是相互作用的名称
*.sif格式简单,容易处理,但它不能规定每个节点的位置、大小、形状等。
2. xgmml格式,它是一种xml格式,可以规定节点和边的许多信息,但也更复杂。
3.*.txt格式:用tab分割的纯文本文件
可以将文件设置成两列,每一列都是基因名(或蛋白质名),同一行的两个基因(或者蛋白质等)代表有互作关系;也可以加其他参数放在第三列,例如两基因调控的强弱系数


本文以txt格式的数据进行演示绘制网络图
网络文件:net.txt:共表达网络;共四列,前两列是gene id,第三列是共表达类别(正1/负-1),第四列是相关系数,以tab键分隔
节点属性文件: 
步骤:
导入网络文件:file->import->network->file(net.txt)
attachments-2017-09-z776E5Bs59b0cdfa584d

其中不同标识代表着不同的含义

attachments-2017-09-Moj1e2pp59b0ce0222cf

导入后

attachments-2017-09-liiuBT2359b0ce144ad0


导入节点属性文件:file->import->table->file(node.txt)(此处为table而非network)
注:node.txt:节点属性文件。四列,包含三种属性;第一列为gene id,与网络文件中一致,第二列为gene name(symbol),第三列为分子类型(蛋白编码基因/lncRNA),第四列为节点在网络中的度。

attachments-2017-09-QLtaEwJl59b0ce3d700f

上方红色方框中“Target Table Data”的信息表示将导入的节点属性表与之前的网络图相关联,其中“Network Collection”选择的是我们之前导入的网络文件,其他参数默认如下,可不用修改,如为其他选项,则需要通络下拉列表重新选择。
下方红色方框中“Preview”中:gene,name,molecular type,degree
第一列gene,设置为“Key”,保证gene id不重复,第二三四列均为属性“Attribute”,如需修改,同样点击名称右侧的三角形标志。
点击确定后,乍看感觉图形没有变化,但此时下方的Table Panel中已自动多出了molecular type,degree两列
attachments-2017-09-86JJPPSG59b0ce7852de
可以通过style中进行简单网络图格式设置

attachments-2017-09-nfXPWNi759b0ce8ad288

得到网络图:

attachments-2017-09-cR5AEKEN59b0cedf67a9
也可以自行拖拽进行微调
导出文件:数据的导出可以是网络文件,表格文件或者是图片文件,图片文件包括多种图片格式以及pdf格式,在工具栏中对应选择即可
点击菜单栏的图片导出*.pdf(同样可以采用export导出其它格式)

attachments-2017-09-gflWtAb559b0ceee1e66
注:注意调整网络图后再保存,否则会出现网络图不完整

转载于:https://www.cnblogs.com/wangshicheng/p/11120719.html

### 使用 Cytoscape 进行评分以筛选候选药物 Cytoscape 是一款强大的网络可视化和分析软件,在生物学领域被广泛用于构建、可视化以及分析复杂的分子交互网络。通过结合合适的插件和算法,可以实现对潜在药物的评分和筛选。 #### 1. 数据准备 在使用 Cytoscape 进行评分之前,需要准备好数据集。通常情况下,这些数据来源于实验结果或公共数据库,例如 IP-MS 获得的蛋白质互作数据[^2]。以下是所需的主要数据类型: - **节点属性**:表示蛋白质或其他生物实体的信息,可能包括表达水平、功能注释等。 - **边权重**:反映两个节点之间关系强度的数据,可以通过实验测量获得,或者由计算模型预测得出。 #### 2. 构建网络 将上述数据导入 Cytoscape 中并创建一个网络图。具体操作如下: - 导入节点列表(Node Table),其中每行代表一个节点,并附带其相关属性。 - 导入边列表(Edge Table),定义哪些节点间存在连接及其对应的权重值。 #### 3. 安装必要插件 为了执行更高级的功能,需安装一些专门设计用来评估节点重要性的 CytoScape 插件。常用的有以下几种: - **NetworkAnalyzer**: 提供多种拓扑指标计算能力,比如度数分布、介数中心性和接近中心性等[^1]。 - **CytoNCA (CytoHubba)**: 主要专注于识别关键节点,提供了十多个不同的排名方法,适用于寻找核心调控因子作为治疗靶点的选择依据之一。 #### 4. 执行评分算法 利用已加载好的插件运行相应的评分逻辑。这里介绍两种常用的技术路线: ##### 方法一:基于拓扑结构的重要性衡量 此方式主要依赖于网络本身的连通特性而不考虑额外外部因素的影响。例如,可以选择“Degree Centrality”来找出那些与其他很多成员相连的关键参与者;或者是采用更加综合考量全局影响力的措施——Betweenness 或 Closeness centrality 来定位在整个体系里起到桥梁作用的核心单元。 ##### 方法二:集成多源信息加权求解 如果除了单纯的物理接触之外还有其他方面的证据支持某些关联的话,则应该把这些附加维度纳入考量范围之内形成复合型评判标准。假设我们已经知道了部分基因/蛋白对于疾病状态下的变化趋势,那么就可以据此赋予相应链接更高的可信度得分从而影响最终的结果排序过程。 #### 5. 结果解释与验证 完成以上步骤之后将会得到一系列按照优先级排列出来的候选项清单。接下来的工作就是针对前几名重点对象展开深入探究,确认它们确实具备成为新型疗法开发目标的价值所在。这一步骤往往涉及湿实验室内的进一步功能性测试环节。 ```python import networkx as nx # 创建简单的无向图实例演示目的仅限于此处展示概念而非实际应用场合下完整的流程再现 G = nx.Graph() edges_with_weights = [(0, 1, {'weight': 7}), (1, 2,{'weight' :8}) ,(2 ,3 ,{'weight' :9} )] G.add_edges_from(edges_with_weights) centrality_measures = { 'degree_centrality': nx.degree_centrality(G), 'betweenness_centrality': nx.betweenness_centrality(G) } for measure_name, values in centrality_measures.items(): print(f"{measure_name}: {values}") ```
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符  | 博主筛选后可见
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值