同T2一样外校蒟蒻可能没看过:
题目描述:
题目背景
桶哥的桶没有送完。
题目描述
桶哥的桶没有送完,他还有n个桶。他决定把这些桶吃掉。他的每一个桶两个属性:种类aia_iai和美味值bib_ibi。若下标为x, y, z(下标从1开始)的三个桶满足:
x<z x < z x<z 且 x+y=z−2y x + y = z - 2y x+y=z−2y 且 ax=az a_x = a_z ax=az
那么它们构成一个套餐,会产生
(x+z)∗(bx−bz) (x + z) * (b_x - b_z) (x+z)∗(bx−bz)
的价值。问:一共会产生多少价值?
上面那个看不清楚的下标是z
输入输出格式
输入格式:
第一行两个整数n,mn,mn,m,表示共有m种共n个桶。
第二行n个整数表示bib_ibi,
第三行n个整数表示aia_iai,(下标)
输出格式:
一行一个整数,表示一共会产生多少价值。由于这个数可能很大,你只需要输出它除以10007的余数。
如果答案是负的,请将其加上10007再对10007取余。如-1应输出10006.
正解开始:
然而_rqy大佬讲的我并没怎么听懂,所以也是一蒙一蒙的。
转换一下公式:
x+y=z-2y
z-x=3y
x,z种类相等
那么把求价值公式:
展开得:xbx+zbx-xbz-zbz(注意下标),
也就是说,这个东西和y半毛钱关系都没有!
理一下关系:
1,z>x
2.z-x为3的倍数
3.z和x为同一种类的桶
那么考虑思路:同余枚举
一个数%3无非是余1余2余3(余0)
那么从1,2,3开始,按下标网上枚举,分3种,分别对应3个不同外循环,而内循环就是网上枚举到最后一个下标,那么别看是双重循环,但是你把枚举次数加起来,是O(n)的。
直接快了好多QWQ
那么回归正题:
内层循环干什么?
当然是利用∑来求和了
安利核心公式:
(x+z)*(bx-bz)=∑x*bx+z*∑bx-bz*∑x-z*bz*∑1
为什么∑的地方不同呢???
因为我们要对z枚举(或者x也行),这样把上一层求和的就给保存下来继续用而不是再for循环求一遍
其实用双层循环而不是三重循环来求阶乘也是一个道理
因为z<x,也就是说对于每一个z,前面从0到z-3的x都满足,都要被加进∑内部
每次只加一个而不是又来一遍for循环。。。
这个比较清楚了吧。。。。。。
上代码了。。。QWQ
#include <algorithm> #include <cctype> #include <cstdio> #include <cstring> int readInt() {//快读 int ans = 0, c, f = 1; while (!isdigit(c = getchar())) if (c == '-') f *= -1; do ans = ans * 10 + c - '0'; while (isdigit(c = getchar())); return ans * f; } const int mod = 10007;//定义%数组 int b[100005], a[100005]; int S[100005], Sx[100005], Sbx[100005], Sxbx[100005];//s为∑ int main() { int n = readInt(); /* m = */readInt(); for(int i = 1; i <= n; i++) b[i] = readInt() % mod; for(int i = 1; i <= n; i++) a[i] = readInt(); int ans = 0; for (int cc = 1; cc <= 3; ++cc) { // { cc, cc+3, cc+6 ... } 分一组 memset(S, 0, sizeof(S)); memset(Sx, 0, sizeof(Sx)); memset(Sbx, 0, sizeof(Sbx)); memset(Sxbx, 0, sizeof(Sxbx)); for(int i = cc; i <= n; i += 3) { ans = (ans + i % mod * Sbx[a[i]] % mod) % mod; ans = (ans - b[i] * Sx[a[i]] % mod) % mod; ans = (ans + Sxbx[a[i]]) % mod; ans = (ans - S[a[i]] * b[i] % mod * (i % mod) % mod) % mod; S[a[i]] = (S[a[i]] + 1) % mod; Sx[a[i]] = (Sx[a[i]] + i) % mod; Sbx[a[i]] = (Sbx[a[i]] + b[i]) % mod; Sxbx[a[i]] = (Sxbx[a[i]] + i % mod * b[i] % mod) % mod; } } printf("%d", (ans + mod) % mod); return 0; }
气喘吁吁的甩胳膊,,
%_rqy大佬,是他出的题和给我们讲的题!