洛谷 P4013 数字梯形问题【最大费用最大流】

第一问:因为每个点只能经过一次,所以拆点限制流量,建(i,i',1,val[i]),然后s向第一行建(s,i,1,0),表示每个点只能出发一次,然后最后一行连向汇点(i',t,1,0),跑最大费用最大流
第二问:没有点经过次数的限制所以不用拆点,s向第一行建(s,i,1,0),然后最后一行连向汇点(i,t,inf,val[i])(这里注意!!连向t的边表示的是选最后一排的点,然后点选的次数不受限所以这里流量为inf!在这里WA了一次),1到n-1行然后每个点向它能到达的两个点连(i,j,1,val[i]),这里表示的是路径,而路径有次数限制,所以流量为1。跑最大费用最大流
第三问:同上,只是没了边的限制所以1到n-1行然后每个点向它能到达的两个点连(i,j,inf,val[i])。跑最大费用最大流

#include<iostream>
#include<cstdio>
#include<queue>
#include<cstring>
using namespace std;
const int N=1000005,inf=1e9;
int n,m,h[N],cnt=1,dis[N],fr[N],id[55][55],tot,a[25][25],ans,ans1,ans2,ans3,s,t;
bool v[N];
struct qwe
{
    int ne,no,to,va,c;
}e[N<<2];
int read()
{
    int r=0,f=1;
    char p=getchar();
    while(p>'9'||p<'0')
    {
        if(p=='-')
            f=-1;
        p=getchar();
    }
    while(p>='0'&&p<='9')
    {
        r=r*10+p-48;
        p=getchar();
    }
    return r*f;
}
void add(int u,int v,int w,int c)
{
    cnt++;
    e[cnt].ne=h[u];
    e[cnt].no=u;
    e[cnt].to=v;
    e[cnt].va=w;
    e[cnt].c=c;
    h[u]=cnt;
}
void ins(int u,int v,int w,int c)
{//cout<<u<<" "<<v<<" "<<w<<endl;
    add(u,v,w,c);
    add(v,u,0,-c);
}
bool spfa()
{
    queue<int>q;
    for(int i=s;i<=t;i++)
        dis[i]=-inf;
    dis[s]=0;
    v[s]=1;
    q.push(s);
    while(!q.empty())
    {
        int u=q.front();
        q.pop();
        v[u]=0;
        for(int i=h[u];i;i=e[i].ne)
            if(e[i].va>0&&dis[e[i].to]<dis[u]+e[i].c)
            {
                dis[e[i].to]=dis[u]+e[i].c;
                fr[e[i].to]=i;
                if(!v[e[i].to])
                {
                    v[e[i].to]=1;
                    q.push(e[i].to);
                }
            }
    }
    return dis[t]!=-inf;
}
void mcf()
{//cout<<"OK"<<endl;
    int x=inf;
    for(int i=fr[t];i;i=fr[e[i].no])
        x=min(x,e[i].va);
    for(int i=fr[t];i;i=fr[e[i].no])
    {
        e[i].va-=x;
        e[i^1].va+=x;
        ans+=x*e[i].c;
    }
}
int fyl()
{
    ans=0;
    while(spfa())
        mcf();
    return ans;
}
int main()
{
    m=read(),n=read();
    for(int i=1;i<=n;i++)
        for(int j=1;j<=m+i-1;j++)
        {
            a[i][j]=read();
            id[i][j]=++tot;
        }//cout<<"ok"<<endl;
    s=0,t=tot*2+1;
    for(int i=1;i<=n;i++)
        for(int j=1;j<=m+i-1;j++)
            ins(id[i][j],id[i][j]+tot,1,a[i][j]);
    for(int i=1;i<=m;i++)
        ins(s,id[1][i],1,0);
    for(int i=1;i<=m+n-1;i++)
        ins(id[n][i]+tot,t,1,0);
    for(int i=1;i<n;i++)
        for(int j=1;j<=m+i-1;j++)
        {
            ins(id[i][j]+tot,id[i+1][j],1,0);
            ins(id[i][j]+tot,id[i+1][j+1],1,0);
        }
    ans1=fyl();
    memset(h,0,sizeof(h));
    cnt=1;s=0,t=tot+1;
    for(int i=1;i<=m;i++)
        ins(s,id[1][i],1,0);
    for(int i=1;i<=m+n-1;i++)
        ins(id[n][i],t,inf,a[n][i]);
    for(int i=1;i<n;i++)
        for(int j=1;j<=m+i-1;j++)
        {
            ins(id[i][j],id[i+1][j],1,a[i][j]);
            ins(id[i][j],id[i+1][j+1],1,a[i][j]);
        }
    ans2=fyl();
    memset(h,0,sizeof(h));
    cnt=1;s=0,t=tot+1;
    for(int i=1;i<=m;i++)
        ins(s,id[1][i],1,0);
    for(int i=1;i<=m+n-1;i++)
        ins(id[n][i],t,inf,a[n][i]);
    for(int i=1;i<n;i++)
        for(int j=1;j<=m+i-1;j++)
        {
            ins(id[i][j],id[i+1][j],inf,a[i][j]);
            ins(id[i][j],id[i+1][j+1],inf,a[i][j]);
        }
    ans3=fyl();
    printf("%d\n%d\n%d\n",ans1,ans2,ans3);
    return 0;
}

转载于:https://www.cnblogs.com/lokiii/p/8441097.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值