BZOJ 1878 HH的项链(主席树)

对于该题,离线的做法是树状数组或者线段树。

如果强制在线的话,可以用主席树做到O(mlogn)。

考虑到这样一个性质,对于询问[l,r]出现的数字种数。其答案就是to[i]>r的数字数。 其中to[i]表示的是第i个数的下一个相同的数出现的下标,没有则=n+1.

很幸运这个性质是满足区间减法的,也就是说对于[1,r]和[1,l-1]的to[i]域,是可以相减得到[l,r]的to[i]域的。

于是我们可以用主席树来解决这个问题。

对于一组询问,实际上就是求[l-1,r]这颗线段树上的区间[r+1,n+1]的出现次数总和。

 

# include <cstdio>
# include <cstring>
# include <cstdlib>
# include <iostream>
# include <vector>
# include <queue>
# include <stack>
# include <map>
# include <set>
# include <cmath>
# include <algorithm>
using namespace std;
# define lowbit(x) ((x)&(-x))
# define pi 3.1415926535
# define eps 1e-9
# define MOD 1000000009
# define INF 1000000000
# define mem(a,b) memset(a,b,sizeof(a))
# define FOR(i,a,n) for(int i=a; i<=n; ++i)
# define FO(i,a,n) for(int i=a; i<n; ++i)
# define bug puts("H");
# define lch p<<1,l,mid
# define rch p<<1|1,mid+1,r
# define mp make_pair
# define pb push_back
typedef pair<int,int> PII;
typedef vector<int> VI;
# pragma comment(linker, "/STACK:1024000000,1024000000")
typedef long long LL;
int Scan() {
    int res=0, flag=0;
    char ch;
    if((ch=getchar())=='-') flag=1;
    else if(ch>='0'&&ch<='9') res=ch-'0';
    while((ch=getchar())>='0'&&ch<='9')  res=res*10+(ch-'0');
    return flag?-res:res;
}
void Out(int a) {
    if(a<0) {putchar('-'); a=-a;}
    if(a>=10) Out(a/10);
    putchar(a%10+'0');
}
const int N=50005;
//Code begin...

int root[N], s[N*80], ls[N*80], rs[N*80], sz, vis[1000005], to[N];

void insert(int l, int r, int x, int &y, int val){
    y=++sz;
    s[y]=s[x]+1;
    if (l==r) return ;
    ls[y]=ls[x]; rs[y]=rs[x];
    int mid=(l+r)>>1;
    if (val<=mid) insert(l,mid,ls[x],ls[y],val);
    else insert(mid+1,r,rs[x],rs[y],val);
}
int query(int l, int r, int x, int y, int L){
    if (r<L) return 0;
    if (l>=L) return s[y]-s[x];
    int mid=(l+r)>>1;
    return query(l,mid,ls[x],ls[y],L)+query(mid+1,r,rs[x],rs[y],L);
}
int main()
{
    int n, m, l, r, x;
    scanf("%d",&n);
    FOR(i,1,n) {
        scanf("%d",&x);
        if (vis[x]) to[vis[x]]=i;
        vis[x]=i;
    }
    FOR(i,1,n) if (to[i]==0) to[i]=n+1;
    FOR(i,1,n) insert(1,n+1,root[i-1],root[i],to[i]);
    scanf("%d",&m);
    FOR(i,1,m) {
        scanf("%d%d",&l,&r);
        printf("%d\n",query(1,n+1,root[l-1],root[r],r+1));
    }
    return 0;
}
View Code

 

转载于:https://www.cnblogs.com/lishiyao/p/6634789.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值