python 矩阵分成上三角下三角和对角三个矩阵

diagonal
Return specified diagonals.
diagflat
Create a 2-D array with the flattened input as a diagonal.
trace
Sum along diagonals.
triu
Upper triangle of an array.
tril
Lower triangle of an array.
先讲一个方阵的对角线下的下三角阵和对角线上的上三角阵提取出来(如果只需要上下三角阵,则去掉tril/triu中的第二个参数)
上代码(这里使用tril和triu都是返回array形式,还需使用mat转换回矩阵):
>>> m = np.mat("1,2,3;4,5,6;7,8,9")
>>> m
matrix([[1, 2, 3],
        [4, 5, 6],
        [7, 8, 9]])
>>> L = np.tril(m,-1)
>>> L
array([[0, 0, 0],
       [4, 0, 0],
       [7, 8, 0]])
>>> U = np.triu(m,1)
>>> U
array([[0, 2, 3],
       [0, 0, 6],
       [0, 0, 0]])

而单独要提取对角线上的元素作为一个矩阵有如下两种方法:

1、运用np.diag两次,再使用mat转换回矩阵:

>>> D = np.diag(np.diag(m))
>>> D
array([[1, 0, 0],
       [0, 5, 0],
       [0, 0, 9]])
>>> D = np.mat(D)
>>> D
matrix([[1, 0, 0],
        [0, 5, 0],
        [0, 0, 9]])

2、运用下三角矩阵减去次下三角矩阵(即对角线下的下三角阵):

>>> D = np.tril(m) - L
>>> D
array([[1, 0, 0],
       [0, 5, 0],
       [0, 0, 9]])
>>> D = np.mat(D)
>>> D
matrix([[1, 0, 0],
        [0, 5, 0],
        [0, 0, 9]])

 

 

 

转载于:https://www.cnblogs.com/cymwill/p/7857456.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值