题目大意:
给定两个正整数n,k\((n \le 10^{15},k\leq10^9)\),求n的从小到大的第k个约数,无解输出-1
分析:
我们会自然而然地想到找出n的所有的约数,然后取第k个。
我们发现如果这样的话时间复杂度为\(O(\sqrt{n})\),空间复杂度为\(O(lnn)\)
所以我们暴力上就好了
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
typedef long long ll;
template<typename T>inline void read(T &x){
x=0;char ch;bool flag = false;
while(ch=getchar(),ch<'!');if(ch == '-') ch=getchar(),flag = true;
while(x=10*x+ch-'0',ch=getchar(),ch>'!');if(flag) x=-x;
}
inline ll cat_max(const ll &a,const ll &b){return a>b ? a:b;}
inline ll cat_min(const ll &a,const ll &b){return a<b ? a:b;}
ll a[2000010],cnt1;
ll b[2000010],cnt2;
int main(){
ll n,k;read(n);read(k);
for(ll i=1;i*i<=n;++i){
if(n % i == 0){
a[++cnt1] = i;
if(i*i != n) b[++cnt2] = n/i;
}
}
if(k > cnt1 + cnt2) puts("-1");
else{
if(k <= cnt1){
printf("%I64d\n",a[k]);
}else{
k -= cnt1;
printf("%I64d\n",b[cnt2-k+1]);
}
}
getchar();getchar();
return 0;
}