Codefroces 762A k-th divisor 数论

Codeforces 762A

题目大意:

给定两个正整数n,k\((n \le 10^{15},k\leq10^9)\),求n的从小到大的第k个约数,无解输出-1

分析:

我们会自然而然地想到找出n的所有的约数,然后取第k个。
我们发现如果这样的话时间复杂度为\(O(\sqrt{n})\),空间复杂度为\(O(lnn)\)
所以我们暴力上就好了

#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
typedef long long ll;
template<typename T>inline void read(T &x){
    x=0;char ch;bool flag = false;
    while(ch=getchar(),ch<'!');if(ch == '-') ch=getchar(),flag = true;
    while(x=10*x+ch-'0',ch=getchar(),ch>'!');if(flag) x=-x;
}
inline ll cat_max(const ll &a,const ll &b){return a>b ? a:b;}
inline ll cat_min(const ll &a,const ll &b){return a<b ? a:b;}
ll a[2000010],cnt1;
ll b[2000010],cnt2;
int main(){
    ll n,k;read(n);read(k);
    for(ll i=1;i*i<=n;++i){
        if(n % i == 0){
            a[++cnt1] = i;
            if(i*i != n) b[++cnt2] = n/i;
        }
    }
    if(k > cnt1 + cnt2) puts("-1");
    else{
        if(k <= cnt1){
            printf("%I64d\n",a[k]);
        }else{
            k -= cnt1;
            printf("%I64d\n",b[cnt2-k+1]);
        }

    }
    getchar();getchar();
    return 0;
}
  

转载于:https://www.cnblogs.com/Skyminer/p/6351873.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值