CF1025B Weakened Common Divisor 数学

Weakened Common Divisor
time limit per test
1.5 seconds
memory limit per test
256 megabytes
input
standard input
output
standard output

During the research on properties of the greatest common divisor (GCD) of a set of numbers, Ildar, a famous mathematician, introduced a brand new concept of the weakened common divisor (WCD) of a list of pairs of integers.

For a given list of pairs of integers (a1,b1)(a1,b1), (a2,b2)(a2,b2), ..., (an,bn)(an,bn) their WCD is arbitrary integer greater than 11, such that it divides at least one element in each pair. WCD may not exist for some lists.

For example, if the list looks like [(12,15),(25,18),(10,24)][(12,15),(25,18),(10,24)], then their WCD can be equal to 22, 33, 55 or 66 (each of these numbers is strictly greater than 11 and divides at least one number in each pair).

You're currently pursuing your PhD degree under Ildar's mentorship, and that's why this problem was delegated to you. Your task is to calculate WCD efficiently.

Input

The first line contains a single integer nn (1n1500001≤n≤150000) — the number of pairs.

Each of the next nn lines contains two integer values aiai, bibi (2ai,bi21092≤ai,bi≤2⋅109).

Output

Print a single integer — the WCD of the set of pairs.

If there are multiple possible answers, output any; if there is no answer, print 1−1.

Examples
input
Copy
3
17 18
15 24
12 15
output
Copy
6
input
Copy
2
10 16
7 17
output
Copy
-1
input
Copy
5
90 108
45 105
75 40
165 175
33 30
output
Copy
5
Note

In the first example the answer is 66 since it divides 1818 from the first pair, 2424 from the second and 1212 from the third ones. Note that other valid answers will also be accepted.

In the second example there are no integers greater than 11 satisfying the conditions.

In the third example one of the possible answers is 55. Note that, for example, 1515 is also allowed, but it's not necessary to maximize the output.

 

 题意:有n组数,每组数有两个数,求一个数是所有组数中的两个中一个的因子

分析:分解第一组数得到他们的质因子,如果这些数有解,则这些因子肯定有一个是其他所有组数中至少一个数的因子

  枚举剩下每组数

AC代码:

#include <map>
#include <set>
#include <stack>
#include <cmath>
#include <queue>
#include <cstdio>
#include <vector>
#include <string>
#include <bitset>
#include <cstring>
#include <iomanip>
#include <iostream>
#include <algorithm>
#define ls (r<<1)
#define rs (r<<1|1)
#define debug(a) cout << #a << " " << a << endl
using namespace std;
typedef long long ll;
const ll maxn = 1e6+10;
const ll mod = 998244353;
const double pi = acos(-1.0);
const double eps = 1e-8;
ll a[maxn], b[maxn];
int main() {
    ios::sync_with_stdio(0);
    ll n, x, y;
    set<ll> s, t;
    cin >> n;
    for( ll i = 0; i < n; i ++ ) {
        cin >> a[i] >> b[i];
    }
    x = a[0], y = b[0];
    for( ll i = 2; i*i <= x; i ++ ) {
        if( x%i == 0 ) {
            s.insert(i);
            while( x%i == 0 ) {
                x /= i;
            }
        }
    }
    for( ll i = 2; i*i <= y; i ++ ) {
        if( y%i == 0 ) {
            s.insert(i);
            while( y%i == 0 ) {
                y /= i;
            }
        }
    }
    if( x > 1 ) {
        s.insert(x);
    }
    if( y > 1 ) {
        s.insert(y);
    }
    bool flg = false;
    for( ll i : s ) {
        bool flag = true;
        for( ll j = 1; j < n; j ++ ) {
            if( a[j]%i && b[j]%i ) {
                flag = false;
                break;
            }
        }
        if(flag) {
            cout << i << endl;
            flg = true;
            break;
        }
    }
    if(!flg) {
        cout << -1 << endl;
    }
    return 0;
}

  

转载于:https://www.cnblogs.com/l609929321/p/9511394.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值