一、线程安全介绍
1.1 现实例子
A. 多个goroutine同时操作一个资源,这个资源又叫临界区
B. 现实生活中的十字路口,通过红路灯实现线程安全
C. 火车上的厕所(进去之后先加锁,在上厕所,不加锁两个人都进去就出问题了,出来后在解锁,别人就可以使用了),通过互斥锁来实现线程安全
D、在程序中,同一个变量多个goroutine去修改的时候,肯定是不允许同时修改的,同时修改肯定会出问题,所以当一个goroutine在修改之前需要加锁,修改结束在解锁,这样别的goroutine就可以去修改了。
1.2 实际例子
x = x +1
A. 先从内存中取出x的值
B. CPU进行计算, x+1
C. 然后把x+1的结果存储在内存中
解释:
就是两个goroutine同时去操作x(共享资源),最后的结果x并不是2,由于线程安全的问题,导致最后的结果还是等于1;
详情也如下图所示:
下面来看一个实际例子:
test1和test2函数都是在自增到1000000(对同一个变量count进行修改)
1)当test1函数和test2函数跑在同一个线程时:
package main import ( "fmt" ) var count int func test1() { for i := 0; i < 1000000; i++ { count++ } } func test2() { for i := 0; i < 1000000; i++ { count++ } } func main() { test1() test2() fmt.Printf("count=%d\n", count) }
执行结果如下:
因为是串行执行,所以最终结果肯定是2000000
2)当test1函数和test2函数独自起goroutine运行时:
package main import ( "fmt" "time" ) var count int func test1() { for i := 0; i < 1000000; i++ { count++ } } func test2() { for i := 0; i < 1000000; i++ { count++ } } func main() { go test1() go test2() time.Sleep(time.Second) fmt.Printf("count=%d\n", count) }
执行结果如下:
解释:
可以看到当test1和test2同时运行对count(共享资源)进行修改时,就会出现冲突,最终结果也就不是2000000了
1.3 如何解决?
那么如何解决上述线程安全问题呢,就是我们接下来要学习的互斥锁。
第2章 互斥锁
2.1 互斥锁介绍
A. 同时有且只有一个线程进入临界区,其他的线程则在等待锁;
B. 当互斥锁释放之后,等待锁的线程才可以获取锁进入临界区;
C. 多个线程同时等待同一个锁,唤醒的策略是随机的;
2.2 互斥锁使用实例
package main import ( "fmt" "sync" //互斥锁需要使用这个包。 "time" ) var count int var mutex sync.Mutex //定义一个锁的变量(互斥锁的关键字是Mutex,其是一个结构体,传参一定要传地址,否则就不对了) func test1() { for i := 0; i < 1000000; i++ { mutex.Lock() //对共享变量操作之前先加锁 count++ mutex.Unlock() //对共享变量操作完毕在解锁,这样就保护了共享的资源 } } func test2() { for i := 0; i < 1000000; i++ { mutex.Lock() count++ mutex.Unlock() } } func main() { go test1() go test2() time.Sleep(time.Second) fmt.Printf("count=%d\n", count) }
执行结果如下:
解释:
加锁(互斥锁)之后其实是相当于串行(对共享变量进行操作时)执行了,就算是goroutine也不例外。
2.3 互斥锁高阶实例
1)未加互斥锁代码(有问题)
package main import ( "fmt" "sync" ) var x = 0 func increment(wg *sync.WaitGroup) { x = x + 1 wg.Done() } func main() { var w sync.WaitGroup for i := 0; i < 1000; i++ { w.Add(1) go increment(&w) } w.Wait() fmt.Println("final value of x", x) }
执行结果:
2)添加互斥锁代码
package main import ( "fmt" "sync" ) var x = 0 func increment(wg *sync.WaitGroup, m *sync.Mutex) { m.Lock() x = x + 1 m.Unlock() wg.Done() } func main() { var w sync.WaitGroup var m sync.Mutex for i := 0; i < 1000; i++ { w.Add(1) go increment(&w, &m) } w.Wait() fmt.Println("final value of x", x) }
执行结果:
三、读写锁
3.1 使用场景
A. 读多写少的场景;
B. 分为两种角色,读锁和写锁;
C. 当一个goroutine获取写锁之后,其他的goroutine获取写锁或读锁都会等待;
D. 当一个goroutine获取读锁之后,其他的goroutine获取写锁都会等待, 但其他
goroutine获取读锁时,都会继续获得锁.;
3.2 读写锁案例演示
package main import ( "sync" "time" ) var rwlock sync.RWMutex //定义一个锁的变量(读写锁的关键字是RWMutex,其是一个结构体,传参一定要传地址,否则就不对了) var wg sync.WaitGroup var count int func writer() { //写的线程 for i := 0; i < 1000; i++ { // 加写锁 rwlock.Lock() //加锁写锁之后,其他goroutine就不能针对该共享变量加读锁或写锁(读取或写入)了 count++ time.Sleep(10 * time.Millisecond) //模拟写操作需要10ms // 释放写锁 rwlock.Unlock() } wg.Done() } func reader() { //读的线程 for i := 0; i < 1000; i++ { // 加读锁 rwlock.RLock() //对于读锁来说,其他goroutine依然可以对该共享变量进行读取(读锁)依然可以,但是写入不行,获取写锁需要等待。 _ = count //fmt.Printf("count=%d\n", count) time.Sleep(1 * time.Millisecond) //模拟读操作场景需要1ms // 释放读锁 rwlock.RUnlock() } wg.Done() } func main() { wg.Add(1) go writer() for i := 0; i < 10; i++ { wg.Add(1) go reader() //读锁是并发的,这里加了for循环主要是为了模拟只要有1个goroutine能够读取到共享资源,其他的goroutine也可以获取到。 } wg.Wait() }
执行结果:
3.3 读写锁和互斥锁性能比较
针对同一个程序,我们通过比较互斥锁和读写锁的耗时来进行直观展示:
首先计算读写锁性能:
代码示例如下:
package main import ( "fmt" "sync" "time" ) var rwlock sync.RWMutex //定义一个锁的变量(读写锁的关键字是RWMutex,其是一个结构体,传参一定要传地址,否则就不对了) var wg sync.WaitGroup var count int func writer() { //写的线程 for i := 0; i < 1000; i++ { // 加写锁 rwlock.Lock() //加锁写锁之后,其他goroutine就不能针对该共享变量加读锁或写锁(读取或写入)了 count++ time.Sleep(10 * time.Millisecond) //模拟写操作需要10ms // 释放写锁 rwlock.Unlock() } wg.Done() } func reader() { //读的线程 for i := 0; i < 1000; i++ { // 加读锁 rwlock.RLock() //对于读锁来说,其他goroutine依然可以对该共享变量进行读取(读锁)依然可以,但是写入不行,获取写锁需要等待。 _ = count //fmt.Printf("count=%d\n", count) time.Sleep(1 * time.Millisecond) //模拟读操作场景需要1ms // 释放读锁 rwlock.RUnlock() } wg.Done() } func main() { start := time.Now().UnixNano() //开始时间 wg.Add(1) go writer() for i := 0; i < 10; i++ { wg.Add(1) go reader() //读锁是并发的,这里加了for循环主要是为了模拟只要有1个goroutine能够读取到共享资源,其他的goroutine也可以获取到。 } wg.Wait() end := time.Now().UnixNano() //结束时间 cost := (end - start) / 1000 / 1000 / 1000 fmt.Printf("cost %d s\n", cost) }
执行结果如下:
互斥锁性能:
见如下实例:
package main import ( "fmt" "sync" "time" ) var mlock sync.Mutex //声明互斥锁变量 var wg sync.WaitGroup var count int func writer_mutex() { //写的线程 for i := 0; i < 1000; i++ { mlock.Lock() count++ time.Sleep(10 * time.Millisecond) //模拟写操作需要10ms mlock.Unlock() } wg.Done() } func reader_mutex() { //读的线程 for i := 0; i < 1000; i++ { mlock.Lock() //对于多个goroutine来说,互斥锁也是只有1个goroutine可以读,并不像读写锁一样,所有goroutine都可以读 _ = count //fmt.Printf("count=%d\n", count) time.Sleep(1 * time.Millisecond) //模拟读操作场景需要1ms mlock.Unlock() } wg.Done() } func main() { start := time.Now().UnixNano() //开始时间 wg.Add(1) go writer_mutex() for i := 0; i < 10; i++ { wg.Add(1) go reader_mutex() } wg.Wait() end := time.Now().UnixNano() //结束时间 cost := (end - start) / 1000 / 1000 / 1000 fmt.Printf("cost %d s\n", cost) }
执行结果如下:
总结:
可以看到最终的结果是同一个程序互斥锁比读写锁耗时多了9秒,主要原因是在读的时候,读写锁可以多个读线程去读,而互斥锁依然只能是一个线程去读,1比10的比例,就造成了最终这个结果。
葵花宝典:
读多写少用读写锁,读写差不多用互斥锁。