题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3810
题意:Magina 去打怪,目的是在最短的时间内得到m units money。已知有N个怪分布在N个地点,打每一怪可以获得gi money,但同时也需要花ti 时间。Magina 可以任意的选择一个怪开始打,已知他又一个技能,就是瞬间移动啦,从一个地方到另一个地方,不需要花费时间,但前提是这俩个地方是相连的,打完一个怪之后,该怪物就会消失,同时那个相连的路也会跟着消失。
分析:大致题意就是这样了,一开始就是直接搜啦,很笨的方法,是因为没注意到一个问题,“ For every spots, Magina may use Ti time to kill the monsters and gain Gi units money, or he choose blink to other spots”,orz,达到每一个地点时,他可以选择不打,然后通过该地点转移到另一个地点,也就是说,对于每一个连通分量,他可以打任何一个怪。所以,剪枝就这里了,先用简单的DFS()搜出当前的整个连通分量,记录下中途可以遇到的所有怪。那么对于当前的连通分量,就可能组合出一个花费最小时间而获得至少m money的打怪顺序了。当然,我们并不需要记录打怪的顺序,所以问题又简化了。
接下来就是组合出一个结果了:
搜出一个连通分量之后,保存所有遇到的怪到q[]结构体中,再对其排序(针对打怪获得的money从小到大)(算是一个剪枝吧),之后就在该结构体数组里面搜索,搜出符合条件的结果;
#include<iostream>
#include<string.h>
#include<algorithm>
#define maxn 2000000001
using namespace std;
bool g[55][55],vis[55];
struct spots
{
int t,u;
}p[55],q[55];
int n,m,qt,ans,hp;
int nextsum[55];
void DFS(int a)
{
vis[a]=true;
q[qt++]=p[a];
hp+=p[a].u;
if(hp>m)
hp=m;
for(int i=1;i<=n;i++)
if(g[a][i] && !vis[i])
DFS(i);
}
void search(int x,int t,int u)
{
if(x==qt)//结构体数组没有元素了
return;
if(t>ans)//大于目前已有的解,则也不必要搜下去了
return;
if(u+nextsum[x]<m)//因为已经排序了,后面已经没有符合条件的了
return ;
if(u+q[x].u>=m)
{
ans=min(ans,t+q[x].t);
search(x+1,t,u);
}
else {
search(x+1,t,u);
search(x+1,t+q[x].t,u+q[x].u);
}
}
bool cmp(spots a,spots b)
{
return a.u>b.u;
}
int main()
{
int T,cas=0,k,a;
scanf("%d",&T);
while(T--)
{
scanf("%d %d",&n,&m);
memset(g,0,sizeof(g));
for(int i=1;i<=n;i++)
{
scanf("%d %d %d",&p[i].t,&p[i].u,&k);
while(k--)
{
scanf("%d",&a);
g[i][a]=1;
}
}
memset(vis,0,sizeof(vis));
ans=maxn;
for(int i=1;i<=n;i++)
{
hp=0;
qt=0;
if(!vis[i])
DFS(i);
if(hp<m) continue;
sort(q,q+qt,cmp);
nextsum[qt-1]=q[qt-1].u;
for(int j=qt-2;j>=0;j--)
{
nextsum[j]=nextsum[j+1]+q[j].u;
if(nextsum[j]>m)
nextsum[j]=m;
}
search(0,0,0);
}
printf("Case %d: ",++cas);
if(ans!=maxn)
printf("%d\n",ans);
else printf("Poor Magina, you can't save the world all the time!\n");
}
return 0;
}