[ZJOI2019]线段树

ZJOI2019最水的一道题,考场上想出了正解却死活调不出来。。

然后就一直咕到了现在(逃

题目求的那个东西可以转化为这样一个东西。

有一些操作,你可以决定每个操作是否执行,动态查询所有可能的情况中线段树上权值为1的节点个数的总和。

然后很自然的(虽然看起来有点奇怪,但真的就很自然的能想到!)想到把维护方案数变成维护期望。

然后根据期望的线性性,等价于维护每个点权值为1的概率。

这样的好处是,如果维护方案数的话,那些不受影响的节点每次操作需要乘上2,维护概率的话则不需要改变。

然后经过一波毒瘤的分类套路,你大概需要设计这样一个dp状态,dp[o][0/1][0/1]表示o这个点,是否为0/1,它到根的路径是否有0/1的概率。

转移方程很普及组,就是有点繁琐。

然后你可以把所有点按照不同的转移方式划分为4类。

1.optset时会被遍历到的点。

2.不会被遍历到但却会被pushdown到的点

3.遍历到的点中最底端,也就是ql<=l&&r<=qr的点

4.第3种点的子树

前三种都可以直接修改,第四种可以通过打标记实现修改。

#include<bits/stdc++.h>
#define N 220000
#define eps 1e-7
#define inf 1e9+7
#define db double
#define ll long long
#define ldb long double
using namespace std;
inline int read()
{
    char ch=0;
    int x=0,flag=1;
    while(!isdigit(ch)){ch=getchar();if(ch=='-')flag=-1;}
    while(isdigit(ch)){x=(x<<3)+(x<<1)+ch-'0';ch=getchar();}
    return x*flag;
}
const int mo=998244353;
int ksm(int x,int k)
{
    int ans=1;
    while(k){if(k&1)ans=1ll*ans*x%mo;k>>=1;x=1ll*x*x%mo;}
    return ans;
}
int inv(int x){return ksm(x,mo-2);}
int v,mi[N],mv[N];
struct Segment_Tree
{
    #define lson o<<1
    #define rson o<<1|1
    #define mid ((l+r)>>1)
    int lx[N*4],rx[N*4];
    int sumv[N*4],tagv[N*4],f[N*4][2][2],g[N*4][2][2];
    inline void pushup(int o)
    {
        sumv[o]=(sumv[lson]+sumv[rson])%mo;
        sumv[o]=(sumv[o]+((f[o][1][0]+f[o][1][1])%mo))%mo;
    }
    inline void update(int o,int t)
    {
        int k=mv[t];tagv[o]+=t;
        for(int i=0;i<=1;i++)
        {
            f[o][i][1]=(f[o][i][1]+(1ll*f[o][i][0]*(1-k)%mo))%mo;
            f[o][i][0]=1ll*f[o][i][0]*k%mo;
        }
    }
    inline void pushdown(int o)
    {
        update(lson,tagv[o]);
        update(rson,tagv[o]);
        tagv[o]=0;
    }
    void build(int o,int l,int r)
    {
        lx[o]=l;rx[o]=r;
        f[o][0][0]=1;
        if(l==r)return;
        build(lson,l,mid);build(rson,mid+1,r);
    }
    void print(int o)
    {
        cout<<lx[o]<<"--"<<rx[o]<<endl;
        for(int i=0;i<=1;i++)for(int j=0;j<=1;j++)
        cout<<(f[o][i][j]%mo+mo)%mo<<" ";cout<<endl<<sumv[o]<<endl<<endl;
    }
    void copy(int o)
    {
        for(int i=0;i<=1;i++)
        for(int j=0;j<=1;j++)
        g[o][i][j]=f[o][i][j];
    }
    void solve(int o,int l,int r,int ql,int qr)
    {
        copy(o);
        if(ql<=l&&r<=qr)return;
        pushdown(o);
        if(ql<=mid)solve(lson,l,mid,ql,qr);else copy(lson);
        if(qr>mid)solve(rson,mid+1,r,ql,qr);else copy(rson);
    }
    void opt(int o,int l,int r)//被pushdown到的节点 
    {
        f[o][0][0]=g[o][0][0];
        f[o][0][1]=1ll*v*g[o][0][1]%mo;
        f[o][1][0]=(g[o][1][0]+(1ll*(g[o][0][1]+g[o][1][1])%mo*v%mo))%mo;
        f[o][1][1]=1ll*v*g[o][1][1]%mo;
        sumv[o]=(f[o][1][0]+f[o][1][1])%mo;
        if(l!=r)sumv[o]=(sumv[o]+((sumv[lson]+sumv[rson])%mo))%mo;
    }
    void optset(int o,int l,int r,int ql,int qr)
    {
        if(ql<=l&&r<=qr)
        {
            //边界点
            f[o][0][0]=1ll*v*g[o][0][0]%mo;
            f[o][0][1]=1ll*v*g[o][0][1]%mo;
            f[o][1][0]=1ll*v*(1+g[o][1][0])%mo;
            f[o][1][1]=1ll*v*g[o][1][1]%mo;
            sumv[o]=(f[o][1][0]+f[o][1][1])%mo;
            if(l!=r)//边界点的子树
            {
                update(lson,1),update(rson,1);
                sumv[o]=(sumv[o]+((sumv[lson]+sumv[rson])%mo))%mo;
            }
            return;
        }
        if(ql<=mid)optset(lson,l,mid,ql,qr);else opt(lson,l,mid);
        if(qr>mid)optset(rson,mid+1,r,ql,qr);else opt(rson,mid+1,r);
        //被访问到的点 
        f[o][0][0]=1ll*v*(1+g[o][0][0])%mo;
        f[o][0][1]=1ll*v*g[o][0][1]%mo;
        f[o][1][0]=1ll*v*g[o][1][0]%mo;
        f[o][1][1]=1ll*v*g[o][1][1]%mo;
        pushup(o);
    }
    int query(){return sumv[1];}
}T;
int main()
{
    int n=read(),m=read();
    v=inv(2);mi[0]=mv[0]=1;T.build(1,1,n);
    for(int i=1;i<=n+m;i++)
    {
        mi[i]=1ll*mi[i-1]*2%mo;
        mv[i]=1ll*mv[i-1]*v%mo;
    }
    for(int i=1,cnt=0;i<=m;i++)
    {
        int flag=read();
        if(flag==1)
        {
            cnt++;
            int l=read(),r=read();
            T.solve(1,1,n,l,r);
            T.optset(1,1,n,l,r);
        }
        if(flag==2)
        {
            int ans=1ll*T.query()*mi[cnt]%mo;
            printf("%d\n",(ans%mo+mo)%mo);
        }
    }
    return 0;
}

转载于:https://www.cnblogs.com/Creed-qwq/p/10780973.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
在信号处理领域,DOA(Direction of Arrival)估计是一项关键技术,主要用于确定多个信号源到达接收阵列的方向。本文将详细探讨三种ESPRIT(Estimation of Signal Parameters via Rotational Invariance Techniques)算法在DOA估计中的实现,以及它们在MATLAB环境中的具体应用。 ESPRIT算法是由Paul Kailath等人于1986年提出的,其核心思想是利用阵列数据的旋转不变性来估计信号源的角度。这种算法相比传统的 MUSIC(Multiple Signal Classification)算法具有较低的计算复杂度,且无需进行特征值分解,因此在实际应用中颇具优势。 1. 普通ESPRIT算法 普通ESPRIT算法分为两个主要步骤:构造等效旋转不变系统和估计角度。通过空间平移(如延时)构建两个子阵列,使得它们之间的关系具有旋转不变性。然后,通过对子阵列数据进行最小二乘拟合,可以得到信号源的角频率估计,进一步转换为DOA估计。 2. 常规ESPRIT算法实现 在描述中提到的`common_esprit_method1.m`和`common_esprit_method2.m`是两种不同的普通ESPRIT算法实现。它们可能在实现细节上略有差异,比如选择子阵列的方式、参数估计的策略等。MATLAB代码通常会包含预处理步骤(如数据归一化)、子阵列构造、旋转不变性矩阵的建立、最小二乘估计等部分。通过运行这两个文件,可以比较它们在估计精度和计算效率上的异同。 3. TLS_ESPRIT算法 TLS(Total Least Squares)ESPRIT是对普通ESPRIT的优化,它考虑了数据噪声的影响,提高了估计的稳健性。在TLS_ESPRIT算法中,不假设数据噪声是高斯白噪声,而是采用总最小二乘准则来拟合数据。这使得算法在噪声环境下表现更优。`TLS_esprit.m`文件应该包含了TLS_ESPRIT算法的完整实现,包括TLS估计的步骤和旋转不变性矩阵的改进处理。 在实际应用中,选择合适的ESPRIT变体取决于系统条件,例如噪声水平、信号质量以及计算资源。通过MATLAB实现,研究者和工程师可以方便地比较不同算法的效果,并根据需要进行调整和优化。同时,这些代码也为教学和学习DOA估计提供了一个直观的平台,有助于深入理解ESPRIT算法的工作原理。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值