prevent to do sth 与 prevent sb (from) doing 用法

本文介绍了在进行植物造型时的一些关键技巧,比如在每次作弯前减少浇水以使枝条略微萎蔫,然后慢慢弯曲枝条以避免折断或形成‘死弯’。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

prevent to do sth

如: Do not water in before making a turn every time 9 days, make wilting of its branch appreciably, make branch the turn slowly next, prevent to break off or cause "dead turn" . 在每次作弯前一两天不要浇水,使其枝条略微萎蔫,然后将枝条慢慢作弯,防止折断或造成“死弯”。

 

prevent sb (from) doing sth

等同于stop ···from 或 keep···from (from为介词,后加ing) 阻止,预防某人干某事

如:l prevent him from going out.我阻止他出去。

转载于:https://www.cnblogs.com/xiaxianfei/p/5337393.html

OFDM(正交频分复用)是一种高效的多载波通信技术,它将高速数据流拆分为多个低速子流,并通过多个并行的低带宽子载波传输。这种技术具有高频谱效率、强抗多径衰落能力灵活的带宽分配优势。 OFDM系统利用大量正交子载波传输数据,子载波间的正交性可有效避免码间干扰(ISI)。其数学表达为多个离散子载波信号的线性组合,调制解调过程通过FFT(快速傅立叶变换)IFFT(逆快速傅立叶变换)实现。其关键流程包括:数据符号映射到子载波、IFFT转换为时域信号、添加循环前缀以减少ISI、信道传输、接收端FFT恢复子载波数据解调原始数据。 Matlab是一种广泛应用于科研、工程数据分析的高级编程语言交互式环境。在OFDM系统设计中,首先需掌握Matlab基础,包括编程语法、函数库工具箱。接着,根据OFDM原理构建系统模型,实现IFFT/FFT变换、循环前缀处理信道建模等关键算法,并通过改变参数(如信噪比、调制方式)评估系统性能。最后,利用Matlab的绘图功能展示仿真结果,如误码率(BER)曲线等。 无线通信中主要考虑加性高斯白噪声(AWGN),其在频带上均匀分布且统计独立。通过仿真OFDM系统,可在不同信噪比下测量并绘制BER曲线。分析重点包括:不同调制方式(如BPSK、QPSK)对BER的影响、循环前缀长度选择对性能的影响以及信道估计误差对BER的影响。 OFDM技术广泛应用于多个领域,如数字音频广播(DAB)、地面数字电视广播(DVB-T)、无线局域网(WLAN)以及4G/LTE5G移动通信,是这些通信标准中的核心技术之一。 深入研究基于Matlab的OFDM系统设计仿真,有助于加深对OFDM技术的理解,并提升解决实际通信问题的能力。仿真得到的关键性能指标(如BER曲线)对评估系统可靠性至关重要。未来可进一步探索复杂信道条件下的OFDM性能及系统优化,以适应不同应用场景
### 回答1: dropout是一种简单的方法,用于防止神经网络过度拟合。它通过在训练过程中随机地将一些神经元的输出设置为零,从而减少了神经元之间的依赖关系,使得网络更加鲁棒泛化能力更强。这种方法可以有效地提高模型的性能,并且在实际应用中得到了广泛的应用。 ### 回答2: dropout是一种简单有效的防止神经网络过拟合的方法,其原理是在训练神经网络时随机选择一部分神经元不参计算。具体来说,对于每个训练样本,我们以一定的概率(通常是50%)随机将其中一些神经元的输出设为0。这样做有两个好处:一是可以减少每个神经元的依赖性,从而使网络更加健壮,避免“依赖某些特定神经元”的问题;二是可以防止过拟合,因为每个神经元都有一定的概率被“关闭”,这样可以避免某些神经元在处理训练数据时过于自信,而在处理测试数据时失效。实际实现时,dropout可以在每个层之间添加dropout层或者在每个全连接层之前添加dropout操作。使用dropout时需要注意,dropout的概率不能过高,否则会使网络无法学习到足够的信息。同时,dropout在测试时需要关闭,因为在测试时我们需要利用所有的神经元进行最终的预测。总的来说,dropout是一种简单而有效的防止神经网络过拟合的方法,可以提高网络的泛化性能鲁棒性。 ### 回答3: 随着深度学习的发展,人们逐渐意识到过拟合问题的严重性。为了解决这个问题,大量的复杂度更高的网络或方法被提出,如L1,L2正则化,数据增强,dropout等。本文将重点介绍dropout这种简单且有效的方法。 dropout是由Geoff Hinton在2012年提出的。其基本思想是在训练神经网络时,通过以概率p(通常为0.5)随机地使一些隐含层单元输出为0。而在预测时,dropout仅仅将所有的单元都保留下来,并将其输出乘以概率p,以避免模型过度依赖于任何一个单元。 dropout的实现方法非常简单,主要包括两个步骤。第一步是在训练时,以概率p决定哪些单元要被保留,哪些要被丢弃。第二步是在预测时,将所有的单元都保留下来,同时将其输出概率p相乘。 dropout具有以下几个优点: 1. dropout可以显著减少过拟合。通过在模型中随机丢弃一些单元,可以有效地减少模型之间的相互依赖,避免复杂模型过度学习训练数据,从而提高泛化能力。 2. dropout可以提高模型学习速度。相比其他正则化方法,dropout的运算速度非常快,只需要在前向传播中做一些简单的随机化,不会对反向传播过程带来额外的复杂度。 3. dropout可以解决模型中的特征选择问题。dropout的随机丢弃可以促使每个神经元的输出都得到充分利用,即使是那些在训练集中很少出现的特征也会得到一定程度的学习,从而避免了一些过拟合问题。 总之,dropout是一种简单且实用的正则化方法,可以显著减少神经网络过拟合的问题,同时也具有很高的运行速度模型准确性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值