计算机科学计算答案第二章矩阵变换和计算讲述
第二章 矩阵变换和计算
一、内容提要
本章以矩阵的各种分解变换为主要内容,介绍数值线性代数中的两个基本问题:线性方程组的求解和特征系统的计算,属于算法中的直接法。基本思想为将计算复杂的一般矩阵分解为较容易计算的三角形矩阵. 要求掌握Gauss(列主元)消去法、矩阵的(带列主元的)分解、平方根法、追赶法、条件数与误差分析、QR分解、Shur分解、Jordan分解和奇异值分解.
(一) 矩阵的三角分解及其应用
1.矩阵的三角分解及其应用
考虑一个阶线性方程组的求解,当系数矩阵具有如下三种特殊形状:对角矩阵,下三角矩阵和上三角矩阵,这时方程的求解将会变得简单.
, , .
对于,可得解为,.
对于,可得解为,,.
对于,可得解为,,.
虽然对角矩阵的计算最为简单,但是过于特殊,任意非奇异矩阵并不都能对角化,因此较为普适的方法是对矩阵进行三角分解.
1).Gauss消去法
只通过一系列的初等行变换将增广矩阵化成上三角矩阵,然后通过回代求与同解的上三角方程组的解.其中第步消元过程中,在第步得到的矩阵的主对角元素称为主元.从的第j行减去第k行的倍数()称为行乘数(子).
2).矩阵的分解
对于n阶方阵,如果存在n阶单位下三角矩阵和n阶上三角矩阵,使得, 则称其为矩阵的分解,也称为Doolittle分解.Gauss消去法对应的矩阵形式即为分解, 其中为所有行乘子组成的单位下三角矩阵, 为Gauss消去法结束后得到的上三角矩阵. 原方程组分解为两个三角形方程组.
3).矩阵分解的的存在和唯一性
如果阶矩阵的各阶顺序主子式均不为零, 则必有单位下三角矩阵和上三角矩阵,使得, 而且和是唯一存在的.
4).Gauss列主元消去法
矩阵每一列主对角元以下(含主对角元)的元素中, 绝对值最大的数称为列主元. 为避免小主元作除数、或作分母,在消元过程中,每一步都按列选主元的Guass消去法称为Gauss列主元消去法.由于选取列主元使得每一个行乘子均为模不超过1的数,因此它避免了出现大的行乘子而引起的有效数字的损失.
5).带列主元的分解
Gauss列主元消去法对应的矩阵形式即为带列主元的分解,选主元的过程即为矩阵的行置换. 因此, 对任意阶矩阵,均存在置换矩阵、单位下三角矩阵和上三角矩阵,使得.由于选列主元的方式不唯一, 因此置换矩阵也是不唯一的. 原方程组两边同时乘以矩阵得到, 再分解为两个三角形方程组.
5).平方根法(对称矩阵的Cholesky分解)
对任意阶对称正定矩阵,均存在下三角矩阵使,称其为对称正定矩阵A 的Cholesky分解. 进一步地, 如果规定的对角元为正数,则是唯一确定的.原方程组分解为两个三角形方程组.
利用矩阵乘法规则和的下三角结构可得
, , i=j+1, j+2,…,n, j=1,2,…,n.
计算次序为.由于,k=1,2,…,j.因此在分解过程中的元素的数量级不会增长,故平方根法通常是数值稳定的,不必选主元.
6).求解三对角矩阵的追赶法
对于三对角矩阵, 它的分解可以得到两个只有两条对角元素非零的三角形矩阵
.
其中
计算次序是. 原方程组分解为两个三角形方程组. 计算公式为
,
该计算公式称为求解三对角形方程组的追赶法.当严格对角占优时,方程组可用追赶法求解, 解存在唯一且数值稳定.
7).矩阵的条件数
设为非奇异矩阵,为矩阵的算子范数,称为矩阵的条件数.矩阵的条件数是线性方程组, 当或的元素发生微小变化,引起方程组解的变化的定量描述, 因此是刻画矩阵和方程组性态的量. 条件数越大, 矩阵和方程组越为病态, 反之越小为良态.常用的矩阵条件数为
∞-条件数: ,
1-条件数: ,
2-条件数: .
矩阵的条件数具有如下的性质:
;
;
,,;
如果为正交矩阵,则,.
一般情况下,系数矩阵和右端项的扰动对解的影响为
定理2.5 设,为非奇异矩阵,为非零向量且和均有扰动.若的扰动非常小,使得,则
.
关于近似解的余量与它的相对误差间的关系有
定理2.6 设,为非奇异矩阵,b为非零向量,则方程组近似解的事后估计式为
.
其中称为近似解的余量,简称余量。
8).矩阵的QR分解
利用正交变换保条件数的性质, 将满秩矩阵化为主对角元都大于零的上三角矩阵, 保持矩阵条件数不变.
设是阶可逆实矩阵, 则存在正交阵和对角元都大于零的上三角阵,使得, 称其为矩阵的分解, 并且.
为实现矩阵一般的分解,我们引入Householder矩阵, 其中. 该矩阵具有如下性质:
特征值为: 即,,;
, 即H阵为对称阵;
,即H阵为正交阵;
如果,则 (不变长度,镜面反射);
设且,取,则
提示:Householder变换并不是直接变换阶矩阵, 而是通过重复变换矩阵的下三角部分的列向量得到上三角矩阵, 因此, 每