使用C++11实现一个半同步半异步线程池

此处输入图片的描述

前言

C++11之前我们使用线程需要系统提供API、posix线程库或者使用boost提供的线程库,C++11后就加入了跨平台的线程类std::thread,线程同步相关类std::mutex、std::lock_guard、std::condition_variable、std::atomic以及异步操作相关类std::async、std::future、std::promise等等,这使得我们编写跨平台的多线程程序变得容易,线程的一个高级应用就是线程池,使用线程池可以充分利用多核CPU的并行计算能力,以及避免了使用单个线程的创建和销毁的开销,所以线程池在实际项目中用的很广泛,很多RPC框架都是用了线程池来处理事务,比如说Thrifteasyrpc等等,接下来我们将使用C++11来实现一个通用的半同步半异步线程池(个人博客也发表了《使用C++11实现一个半同步半异步线程池》)。

实现

一个半同步半异步线程池分为三层。

  1. 同步服务层:它处理来自上层的任务请求,上层的请求可能是并发的,这些请求不是马上就会被处理的,而是将这些任务放到一个同步排队层中,等待处理。
  2. 同步排队层: 来自上层的任务请求都会加到排队层中等待处理,排队层实际就是一个std::queue。
  3. 异步服务层: 这一层中会有多个线程同时处理排队层中的任务,异步服务层从同步排队层中取出任务并行的处理。

这三个层次之间需要使用std::mutex、std::condition_variable来进行事件同步,线程池的实现代码如下。

#ifndef _THREADPOOL_H
#define _THREADPOOL_H

#include <vector>
#include <queue>
#include <thread>
#include <mutex>
#include <memory>
#include <functional>
#include <condition_variable>
#include <atomic>
#include <type_traits>

static const std::size_t max_task_quque_size = 100000;
static const std::size_t max_thread_size = 30;

class thread_pool
{
public:
    using work_thread_ptr = std::shared_ptr<std::thread>;
    using task_t = std::function<void()>; 

    explicit thread_pool() : _is_stop_threadpool(false) {}

    ~thread_pool()
    {
        stop();
    }

    void init_thread_num(std::size_t num)
    {
        if (num <= 0 || num > max_thread_size)
        {
            std::string str = "Number of threads in the range of 1 to " + std::to_string(max_thread_size);
            throw std::invalid_argument(str);
        }

        for (std::size_t i = 0; i < num; ++i)
        {
            work_thread_ptr t = std::make_shared<std::thread>(std::bind(&thread_pool::run_task, this));
            _thread_vec.emplace_back(t);
        }
    }

    // 支持普通全局函数、静态函数、以及lambda表达式
    template<typename Function, typename... Args>
    void add_task(const Function& func, Args... args)
    {
        if (!_is_stop_threadpool)
        {
            // 用lambda表达式来保存函数地址和参数
            task_t task = [&func, args...]{ return func(args...); };
            add_task_impl(task);
        }
    }

    // 支持函数对象(仿函数)
    template<typename Function, typename... Args>
    typename std::enable_if<std::is_class<Function>::value>::type add_task(Function& func, Args... args)
    {
        if (!_is_stop_threadpool)
        {
            task_t task = [&func, args...]{ return func(args...); };
            add_task_impl(task);
        }
    }

    // 支持类成员函数
    template<typename Function, typename Self, typename... Args>
    void add_task(const Function& func, Self* self, Args... args)
    {
        if (!_is_stop_threadpool)
        {
            task_t task = [&func, &self, args...]{ return (*self.*func)(args...); };
            add_task_impl(task);
        }
    }

    void stop()
    {
        // 保证terminate_all函数只被调用一次
        std::call_once(_call_flag, [this]{ terminate_all(); });
    }

private:
    void add_task_impl(const task_t& task)
    {
        {
            // 任务队列满了将等待线程池消费任务队列
            std::unique_lock<std::mutex> locker(_task_queue_mutex);
            while (_task_queue.size() == max_task_quque_size && !_is_stop_threadpool)
            {
                _task_put.wait(locker);
            }

            _task_queue.emplace(std::move(task));
        }

       // 向任务队列插入了一个任务并提示线程池可以来取任务了
        _task_get.notify_one();
    }

    void terminate_all()
    {
        _is_stop_threadpool = true;
        _task_get.notify_all();

        for (auto& iter : _thread_vec)
        {
            if (iter != nullptr)
            {
                if (iter->joinable())
                {
                    iter->join();
                }
            }
        }
        _thread_vec.clear();

        clean_task_queue();
    }

    void run_task()
    {
        // 线程池循环取任务
        while (true)
        {
            task_t task = nullptr;
            {
                // 任务队列为空将等待
                std::unique_lock<std::mutex> locker(_task_queue_mutex);
                while (_task_queue.empty() && !_is_stop_threadpool)
                {
                    _task_get.wait(locker);
                }

                if (_is_stop_threadpool)
                {
                    break;
                }

                if (!_task_queue.empty())
                {
                    task = std::move(_task_queue.front());
                    _task_queue.pop();
                }
            }

            if (task != nullptr)
            {
                // 执行任务,并通知同步服务层可以向队列放任务了
                task();
                _task_put.notify_one();
            }
        }
    }

    void clean_task_queue()
    {
        std::lock_guard<std::mutex> locker(_task_queue_mutex);
        while (!_task_queue.empty())
        {
            _task_queue.pop();
        }
    }

private:
    std::vector<work_thread_ptr> _thread_vec;
    std::condition_variable _task_put;
    std::condition_variable _task_get;
    std::mutex _task_queue_mutex;
    std::queue<task_t> _task_queue;
    std::atomic<bool> _is_stop_threadpool;
    std::once_flag _call_flag;
};

#endif

测试代码

#include <iostream>
#include <string>
#include <chrono>
#include "thread_pool.hpp"

void test_task(const std::string& str)
{
    std::cout << "Current thread id: " << std::this_thread::get_id() << ", str: " << str << std::endl;
    std::this_thread::sleep_for(std::chrono::milliseconds(50));
}

class Test
{
public:
    void print(const std::string& str, int i)
    {
        std::cout << "Test: " << str << ", i: " << i << std::endl;
    }
};

class Test2
{
public:
    void operator()(const std::string& str, int i)
    {
        std::cout << "Test2: " << str << ", i: " << i << std::endl;
    }
};

int main()
{
    Test t;
    Test2 t2;
    thread_pool pool;
    // 启动10个线程
    pool.init_thread_num(10);

    std::string str = "Hello world";
    
    for (int i = 0; i < 1000; ++i)
    {
        // 支持lambda表达式
        pool.add_task([]{ std::cout << "Hello ThreadPool" << std::endl; });
        // 支持全局函数
        pool.add_task(test_task, str);
        // 支持函数对象
        pool.add_task(t2, str, i);
        // 支持类成员函数
        pool.add_task(&Test::print, &t, str, i);
    }

    std::cin.get();
    std::cout << "##############END###################" << std::endl;
    return 0;
}

测试程序启动了十个线程并调用add_task函数加入了4000个任务,add_task支持普通全局函数、静态函数、类成员函数、函数对象(仿函数)以及lambda表达式,并且支持函数传入,该线程池的实现以及测试代码我已经放到了github上。

参考资料

《深入应用C++11--代码优化与工程级应用》

转载于:https://www.cnblogs.com/highway-9/p/5988991.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值