组合数学1.1——棋盘的完美覆盖

组合数学系列的博文是博主20050901阅读《组合数学》(美)Richard A.Brualdi著  这本书时的一些理解,以及课后习题个人的解答,没有其他的商业目的。

组合数学1.1讲述的是棋盘的完美覆盖问题,主要研究的是一个切过的棋盘存在完美覆盖的充分必要条件是什么。在书中作者给出了详细的证明过程,在此就简单说明一下。

首先定义一些量:
1.b格牌,就是指1*b的条形牌,如下图所示

2.完美覆盖书中说的是“棋盘上b格牌的一个排列,(1)使得没有两个b格牌重叠;(2)每一个b格牌完美覆盖棋盘上b个方格;(3)棋盘上的所有方格被覆盖。“

充分必要条件的结论:m*n棋盘有b格牌的完美覆盖当且仅当b或者是m的一个因子或者是n的一个因子。

要证明这个命题,我们分许多步

section 1:证明m*n能被b整除。

这件事应该是好说明的

有完美覆盖的定义可以得到,完美覆盖后的结果是正整数个b格牌占满了整个棋盘。

由于b格牌的个数是正整数个所以m*n/b为正整数证毕。

section 2:分类讨论b

当b是质数时,显然b或者是m的一个因子或者是n的一个因子。

当b是合数时,设m和n除以b时的商和余数分别为p,q,r,s,则:
m=pb+r(0<=r<=b-1)

n=qb+s(0<=s<=b-1)通过交换棋盘的行和列,不妨设r<=s,下证r=0.

我们将棋盘进行染色,用1——b的颜料,相邻两个格子颜色不同。

完美覆盖的每一张b格牌覆盖b个方格且每一个方格覆盖一种颜色。

因此,在棋盘上每一种颜色的方格数一定相同。

我们将一个棋盘分为三个部分:上方pb*n部分,左下方r*qb部分和右下方r*s部分。

在上方部分,每一列上每一种颜色出现p次,所以总共出现pn次。

同理,在左下方部分,每一行上,因为每一种颜色出现q次,因此它们总共出现rq次。

因此在左上方和上方每一种颜色出现的次数相同。

结合前文中“因此,在棋盘上每一种颜色的方格数一定相同。”得到右下方每种颜色出现次数也相同,即r*s=r*b,得到b=s,与前文“(0<=s<=b-1)”矛盾,证毕。

 

转载于:https://www.cnblogs.com/Robin20050901/p/10356756.html

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值