BZOJ 1123[POI2008]BLO-Tarjan

Description

求出如果把每个点割去, 有序对$(x, y)$且 $x,y$不连通的对数

 

Solution

做一遍Tarjan割点,一个点$x$ 不是割点, 那么有序对数为$ 2 * (n - 1)$

如果$x$为割点, 那么割去$x$ 所构成的联通块有3类:

1: $x$

2: $x$的搜索树中的点$y$, 且$low[y] >= dfn[x]$

3:其他节点

 

对于联通块$i$,大小为$size_i$, 那么最后的答案就是$\sum (n - size_i)*(size_i)$。

 

Code

 1 #include<cstdio>
 2 #include<cstring>
 3 #include<algorithm>
 4 #define ll long long
 5 #define rep(i,a,b) for(register int i = (a) ; i <= (b); ++i)
 6 #define per(i,a,b) for(register int i = (a); i >= (b); --i)
 7 #define rd read()
 8 #define R register
 9 using namespace std;
10 
11 const int N = 1e5 + 1e4, M = 5e5 + 1e4;
12 
13 int dfn[N], low[N], cnt;
14 int n, m, head[N], tot, size[N], cut[N];
15 ll ans[N];
16 
17 struct edge {
18     int nxt, to;
19 }e[M << 1];
20 
21 int read() {
22     int X = 0, p = 1; char c = getchar();
23     for(; c > '9' || c < '0'; c = getchar()) if(c == '-') p = -1;
24     for(; c >= '0' && c <= '9'; c = getchar()) X = X * 10 + c - '0';
25     return X * p;
26 }
27 
28 void added(int u, int v) {
29     e[++tot].to = v;
30     e[tot].nxt = head[u];
31     head[u] = tot;
32 }
33 
34 void add(int u, int v) {
35     added(u, v); added(v, u);
36 }
37 
38 int ch(int x) {
39     return ((x + 1) & 1) - 1;
40 }
41 
42 void dfs(int x, int pre) {
43     dfn[x] = low[x] = ++cnt;
44     size[x] = 1;
45     int flag = 0, sum = 0;
46     for(R int i = head[x]; i; i = e[i].nxt) {
47         if(i == ch(pre)) continue;
48         int nt = e[i].to;
49         if(dfn[nt]) low[x] = min(low[x], dfn[nt]);
50         else {
51             dfs(nt, i);
52             low[x] = min(low[x], low[nt]);
53             size[x] += size[nt];
54             if(low[nt] >= dfn[x]) {
55                 flag++;
56                 ans[x] += 1LL * size[nt] * (n - size[nt]);
57                 sum += size[nt];
58                 if(x != 1 || flag > 1) cut[x] = 1;
59             }
60         }
61     }
62     if(cut[x])
63         ans[x] += n - 1 + 1LL*(n - sum - 1) * (sum + 1);
64     else ans[x] = 2 * (n - 1);
65 }
66 
67 int main()
68 {
69     n = rd; m = rd;
70     rep(i, 1, m) add(rd, rd);
71     rep(i, 1, n) if(!dfn[i]) dfs(i, -1);
72     rep(i, 1, n) printf("%lld\n", ans[i]);
73 }
View Code

 

转载于:https://www.cnblogs.com/cychester/p/9603967.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值