题意:给n个木块的起始高度,还有每个木块加一高度的代价,求使每个木块相邻两边高度不同的最小代价。
思路:设f[i][j],表示判断到第i个木块,第i个木块增高j所需的最小代价,可知,每个木块因为相邻两个木块,所以每个木块只需要增高0,1,2这三种可能,做法就是相当于暴力枚举加记忆化了。
#include<bits/stdc++.h>
using namespace std;
#define ll long long
const int maxn=3e5+10;
int a[maxn];
int v[maxn];
ll f[maxn][3];
int main()
{
int t,n;
scanf("%d",&t);
while(t--)
{
scanf("%d",&n);
for(int i=1; i<=n; i++)
scanf("%d%d",&a[i],&v[i]);
for(int i=1; i<=n; i++)
for(int j=0; j<3; j++)
f[i][j]=1e18;
f[0][0]=f[0][1]=f[0][2]=0;
for(int i=1; i<=n; i++)
{
for(int j=0; j<3; j++)
for(int k=0; k<3; k++)
{
if(a[i-1]+j!=a[i]+k)
{
f[i][k]=min(f[i][k],f[i-1][j]+k*v[i]);
}
}
}
printf("%lld\n",min(min(f[n][0],f[n][1]),f[n][2]));
}
}