D. Make The Fence Great Again time limit per test 2 seconds memory limit per test 256 megabytes input standard input output standard output You have a fence consisting of nn vertical boards. The width of each board is 11. The height of the ii-th board is aiai. You think that the fence is great if there is no pair of adjacent boards having the same height. More formally, the fence is great if and only if for all indices from 22 to nn, the condition ai−1≠aiai−1≠ai holds. Unfortunately, it is possible that now your fence is not great. But you can change it! You can increase the length of the ii-th board by 11, but you have to pay bibi rubles for it. The length of each board can be increased any number of times (possibly, zero). Calculate the minimum number of rubles you have to spend to make the fence great again! You have to answer qq independent queries. Input The first line contains one integer qq (1≤q≤3⋅1051≤q≤3⋅105) — the number of queries. The first line of each query contains one integers nn (1≤n≤3⋅1051≤n≤3⋅105) — the number of boards in the fence. The following nn lines of each query contain the descriptions of the boards. The ii-th line contains two integers aiai and bibi (1≤ai,bi≤1091≤ai,bi≤109) — the length of the ii-th board and the price for increasing it by 11, respectively. It is guaranteed that sum of all nn over all queries not exceed 3⋅1053⋅105. It is guaranteed that answer to each query will not exceed 10181018. Output For each query print one integer — the minimum number of rubles you have to spend to make the fence great. Example input Copy 3 3 2 4 2 1 3 5 3 2 3 2 10 2 6 4 1 7 3 3 2 6 1000000000 2 output Copy 2 9 0 Note In the first query you have to increase the length of second board by 22. So your total costs if 2⋅b2=22⋅b2=2. In the second query you have to increase the length of first board by 11 and the length of third board by 11. So your total costs if 1⋅b1+1⋅b3=91⋅b1+1⋅b3=9. In the third query the fence is great initially, so you don't need to spend rubles. |
#include<cstdio>
const int N=300002;
const long long Inf=1ll<<60;
typedef long long ll;
ll T,n,a[N],b[N],i,f[N][3],j,k;
ll min(ll x,ll y)
{
return x<y?x:y;
}
int main()
{
scanf("%lld",&T);
while(T--)
{
scanf("%lld",&n);
for(i=0;i<=n;i++)
for(j=0;j<3;j++)
f[i][j]=Inf;
for(i=1;i<=n;i++)
scanf("%lld%lld",a+i,b+i);
f[0][0]=0;
for(i=1;i<=n;i++)
for(j=0;j<3;j++)
for(k=0;k<3;k++)
if(a[i]+j!=a[i-1]+k)
f[i][j]=min(f[i][j],f[i-1][k]+j*b[i]);
printf("%lld\n",min(min(f[n][0],f[n][1]),f[n][2]));
}
}