直角坐标积分化为极坐标积分_高斯积分杂谈

本文介绍了如何通过量纲分析记忆高斯积分,并详细解释了从直角坐标到极坐标转换积分的过程,揭示了π的来源。通过极坐标的对称性,使得原本轴对称的积分问题简化,强调了π与圆的密切关系,帮助理解和记忆高斯积分公式。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

点击蓝字关注我们

0c4d8de222802a56da922c6b958be70a.png

高斯积分作为一种特殊的反常积分,其应用范围相当广泛,无论是在概率论中所引入的高斯分布(亦称正态分布),还是在统计物理中的相关应用,都表明其有着至关重要的作用。

下面我们来介绍一种记忆高斯积分的方法:

01

从量纲谈起

我们之前曾借助量纲辅助记忆了不少公式,有兴趣的读者不妨在《物理记忆》栏目中回顾有关量纲分析的相关应用。但在该专栏中未曾讨论过量纲如何在超越函数中应用,现在我们做一讨论:

简单回顾正弦,余弦,e指数这三大超越函数的幂级数展开式:

9ab79ccb30f5d6fb2aa3234ea54c04a5.png

从中不难看出,若x具有物理量纲,则展开式的每一项量纲都不相同,而量纲不相同的物理量是无法相加的,因此x仅能为无量纲数,例如弧度制的角度θ

我们回到高斯积分本身:

对此公式,我们不妨给x赋予长度的量纲

16f0bb6e1f76cddf0f60d47c4ed84fb2.png

那么根据上述分析,a的量纲必须为长度的负二次方,方能使a乘以x平方是无量纲数。

f3a8527e998b04749b9115536a817d96.png

我们观察等号左侧e指数项整体无量纲,dx具有长度量纲,因此等号左侧具有长度量纲

de99cb1930093382a3be669e8ba92896.png

那么等号右侧也必须有长度量纲[L]

考虑到a具有长度负二次方的量纲,为使等号右侧也为长度量纲,因此等号右侧必须出现a的负二分之一次方:

e7474176c7274ed2e810297e653b9899.png

02

π何来?

第一部分已经分析了右侧必须出现a的负二分之一次方,但尚未解释为何还需要再乘以常系数根号π,为确定此系数,可以令a=1

f192a225f24c65d074dd781144526f81.png

该积分右侧便是所需确定的系数

下面采用一些技巧来计算上述积分:

6c40af7d61c32968dedd55a8550db83a.png

由此我们转化为了二重积分,看似将问题复杂化了,实则引入了更强的对称性,我们此时可以用极坐标去处理:直角坐标的面积微元dxdy对应极坐标的面积微元rdrdθ,且积分是对整个二维平面进行积分,因此有:

c75a1c8edd56cf1f8b61d4087649873c.png

最终得到:

fb2d80b71079c1aac32d07cc758a9b11.png

03

记忆

第二部分的过程仅仅给出了具体推导过程,而至于记忆方法,我们可以这么想:

为了计算积分结果,将本来对称性较低的积分(原来的被积函数是偶函数,仅具有轴对称型)化为根号下二重积分,以便于利用极坐标下更好的对称性,而极坐标网格是一圈一圈的圆环构成的,而π这个常数的出现恰是与圆密切联系的,因此我们可以由此记忆常数根号π的由来

fb2d80b71079c1aac32d07cc758a9b11.png

再结合第一部分,由量纲法得出等号右侧必须出现a的负二分之一次方

e7474176c7274ed2e810297e653b9899.png

综上,结合二者便可记忆高斯积分公式:

0c4d8de222802a56da922c6b958be70a.png 7ce98e9ac40b8fff333da4c65088fb4d.png

奇技淫巧学术驿站

生活不可万事都硬刚,学术也一样~

微信号 : qjyqxsyz

● 扫码关注我们

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值