你提问给出的定义是不是有点问题呀。。
对于更一般的集合E,可能没有E中的上确界,倒是把第一个括号里的E改成一个E的有上界的超集或许更好~
要给你那个四层套娃写注释的话,其实是这样的:
第一个括号里是为了确定一个E中的最大值beta(所以说我觉得你这个命题有问题。。。)
第二个括号是为了确定E的所有值都不超过前面选的beta
第三个是为了刻画某一个误差,以来验证最小性质(因为是找最小上界,所以就要保证E中尽可能大的数,要任意小于beta)
第四个为了验证,这个最小性质是成立的(成立的话就能找到这样的x0了)
我猜,你问这个问题觉得上确界定义冗余。直接定义一个最大值不就好了?
若是这样的话,其实有的集合取不到最大值,譬如{-1/n},上确界为0,但取不到 。但要是单纯要找上界,却又太宽泛了。
如果写程序,把程序写的比较“代数”的话,譬如寻找某个集合中的最大值,遍历一遍就会得到结果。对于程序比较“分析”的话,譬如计算一个函数某个范围内的极值,就需要考虑“商去局部环的一个极大理想”(俗称 忽略误差)
数学中的定义往往是为了更好处理现有矛盾而存在的。觉得定义不直观,可以试图修改一下定义,看看修改后的定义后,对于之前的一些数学命题的描述是更加简洁了还是复杂了。