欧拉函数
2017-09-08
什么是欧拉函数?就是φ(x),定义:φ(x)是小于x的所有1<=ai<=x且gcd(ai,x)=1的数的个数;
性质:φ(x)<=x-1(当且x为素数是取等号)即当x为素数时φ(x)=x-1
如果n,m都是质数,那么φ(n*m)=φ(n)*φ(m)=(n-1)(m-1);
如果x为奇数,那么φ(2x)=φ(x);这个其实用简单的代换就知道,φ(2x)=φ(2)*φ(x);φ(2)=1。。这么水......
即
p是每一步分解出的质数,n最大为sqrt(x),且max(n)<log2n
φ(pk)=pk-pk-1=(p-1)*pk-1 ①其中p是质数
证明;在0<=ai<=pk中有pk-1个ai%p=0的数,用容斥即可得到。①得证
aφ(x)≡1 (mod x)当x为质数是即为费马小定理..
EXT欧拉函数
ax ≡ax%φ(m)+φ(m)(mod m)a为任意整数,x>=φ(m);a与m不一定互素
by:s_a_b_e_r
尝试整理一下楼上的定理(其实是自己看晕了x
欧拉函数(φ())
定义: φ(x)是小于x的所有1<=ai<=x且gcd(ai,x)=1的数的个数;
求欧拉函数值:或
(对于任意元素pi,都有x%pi==0,且pi≠pj)
性质: 1.φ(x)<=x-1(当且仅当x为素数时取"=")
2.如果n,m互质,那么φ(n*m)=φ(n)*φ(m)
P.S.如果x为奇数,那么φ(2x)=φ(2)*φ(x)=1*φ(x)=φ(x)
3.如果一个数是质数p的k次方,那么有φ(pk)=pk-pk-1=(p-1)*pk-1
欧拉定理
aφ(x)≡1 (mod x) (a、x互质)
当x为质数时,φ(x)=x-1,即ax-1≡1 (mod x) (=费马小定理)
欧拉函数EXT
ax ≡ax%φ(m)+φ(m)(mod m)
条件:a为任意整数,x>=φ(m);
注:此处a与m不一定互素
以上都是抄的s的
by:wypx