欧拉函数求法与应用

欧拉函数简介:

写在前面:

欧拉函数只是工具:提供1到N中与N互质的数

定义和简单性质

欧拉函数在OI中是个非常重要的东西,不知道的话会吃大亏的.

欧拉函数用希腊字母φ表示,φ(N)表示N的欧拉函数.

对φ(N)的值,我们可以通俗地理解为小于N且与N互质的数的个数(包含1).

欧拉函数的一些性质:

1.对于素数p, φ(p)=p-1,对于对两个素数p,q φ(pq)=pq-1

欧拉函数是积性函数,但不是完全积性函数.

证明:

函数的积性即:若m,n互质,则φ(mn)=φ(m)φ(n).由“m,n互质”可知m,n无公因数,所以φ(m)φ(n)=m(1-1/p1)(1-1/p2)(1-1/p3)…(1-1/pn)·n(1-1/p1')(1-1/p2')(1-1/p3')…(1-1/pn'),其中p1,p2,p3...pn为m的质因数,p1',p2',p3'...pn'为n的质因数,而m,n无公因数,所以p1,p2,p3...pn,p1',p2',p3'...pn'互不相同,所以p1,p2,p3...pn,p1',p2',p3'...pn'均为mn的质因数且为mn质因数的全集,所以φ(mn)=mn(1-1/p1)(1-1/p2)(1-1/p3)…(1-1/pn)(1-1/p1')(1-1/p2')(1-1/p3')…(1-1/pn'),所以φ(mn)=φ(m)φ(n).

即φ(mn)=φ(n)*φ(m)只在(n,m)=1时成立.

2.对于一个正整数N的素数幂分解N=P1^q1*P2^q2*...*Pn^qn.

   φ(N)=N*(1-1/P1)*(1-1/P2)*...*(1-1/Pn).

3.除了N=2,φ(N)都是偶数.

4.设N为正整数,∑φ(d)=N (d|N).

根据性质2,我们可以在O(sqrt(n))的时间内求出一个数的欧拉函数值.

如果我们要求1000000以内所有数的欧拉函数,怎么办.

上面的方法复杂度将高达O(N*sqrt(N)).

我们来看看线性筛法的程序:


代码来源:http://blog.csdn.net/once_hnu/article/details/6302868

[cpp] view plain copy
 print?在CODE上查看代码片派生到我的代码片
  1. //直接求解欧拉函数  
  2. int euler(int n){ //返回euler(n)   
  3.      int res=n,a=n;  
  4.      for(int i=2;i*i<=a;i++){  
  5.          if(a%i==0){  
  6.              res=res/i*(i-1);//先进行除法是为了防止中间数据的溢出   
  7.              while(a%i==0) a/=i;  
  8.          }  
  9.      }  
  10.      if(a>1) res=res/a*(a-1);  
  11.      return res;  
  12. }  
  13.   


它在O(N)的时间内遍历了所有的数,并且有很多的附加信息,

那么我们是不是能在筛素数的同时求出所有数的欧拉函数呢.

答案是可以.

φ(n)=n*(1-1/p1)(1-1/p2)....(1-1/pk),其中p1、p2…pk为n的所有素因子。
比如:φ(12)=12*(1-1/2)(1-1/3)=4。
利用这个就比较好求了,可以用类似求素数的筛法。
先筛出N以内的所有素数,再以素数筛每个数的φ值。
比如求10以内所有数的φ值:
设一数组phi[11],赋初值phi[1]=1,phi[2]=2...phi[10]=10;
然后从2开始循环,把2的倍数的φ值*(1-1/2),则phi[2]=2*1/2=1,phi[4]=4*1/2=2,phi[6]=6*1/2=3....;
再是3,3的倍数的φ值*(1-1/3),则phi[3]=3*2/3=2,phi[6]=3*2/3=2,phi[9]=.....;
再5,再7...因为对每个素数都进行如此操作,因此任何一个n都得到了φ(n)=n*(1-1/p1)(1-1/p2)....(1-1/pk)的运算
觉得这个“筛”还是比较好用的,以前求数的所有因子之和也是用的它。
代码如下:

 
筛法求欧拉函数

<span style="font-size:18px;"><span style="font-size:18px;">void Init(){   
     euler[1]=1;  
     for(int i=2;i<Max;i++)  
       euler[i]=i;  
     for(int i=2;i<Max;i++)  
        if(euler[i]==i)  
           for(int j=i;j<Max;j+=i)  
              euler[j]=euler[j]/i*(i-1);//先进行除法是为了防止中间数据的溢出   
}  </span></span>

欧拉函数的应用

我们知道,一个数K能分解成p1^(q1)*p2^(q2)...

那么,这个数的因子个数就是(1+q1)*(1+q2)*...*(1+qk)

1.HDOJ2588

来源:http://blog.csdn.net/ydd97/article/details/47858679

给定N,M求gcd(i,N)>=M的i的个数

我们可以分解N=a*b, i=a*d(b>=d 且b,d互质),那么我们要求的就是a》=m的时候d的个数(b随a而确定)

由于b>=d且b,d互质,所以这个数目就是φ(b)-1  

但是,如果对于每个a枚举b,铁定超时。(仍然O((N-M)*sqrt(N))的复杂度)


但是如果单纯这样全部枚举的话依旧会超时,所以我们要想一个办法去优化它。

我们可以折半枚举,这里的折半并不是二分的意思。

我们先看,我们枚举时,当i<sqrt(n),假设a=n / i, 当i>sqrt(n)之后 有b=n/i,我们观察到当n%i==0时,会出现一种情况,就是a*b==n。所以我们就可以只需要枚举sqrt(n)种情况,然后和它对应的情况就是 n/i。

我们这种枚举时间会快非常多

[cpp]  view plain  copy
 print ?
  1. #include <stdio.h>  
  2. #include <math.h>  
  3. #include <vector>  
  4. #include <queue>  
  5. #include <string>  
  6. #include <string.h>  
  7. #include <stdlib.h>  
  8. #include <iostream>  
  9. #include <algorithm>  
  10.   
  11. using namespace std;  
  12.   
  13. int euler(int n)  
  14. {  
  15.     int res=n;  
  16.     for(int i=2;i*i<=n;i++){  
  17.         if(n%i==0){  
  18.            res=res/i*(i-1);  
  19.            while(n%i==0) n/=i;  
  20.         }  
  21.     }  
  22.     if(n>1) res-=res/n;  
  23.     return res;  
  24. }  
  25.   
  26. int main()  
  27. {  
  28.     int t;  
  29.     scanf("%d",&t);  
  30.     while(t--){  
  31.         int n,m;  
  32.         scanf("%d%d",&n,&m);  
  33.         int ans=0;  
  34.         for(int i=1;i*i<=n;i++){  
  35.             if(n%i==0){  
  36.                 if(i>=m)ans+=euler(n/i); //计算sqrt(n)左边的  
  37.                 if(n/i>=m&&i*i!=n) ans+=euler(i);//计算sqrt(n)右边的i*i==n时,在上个语句已经执行  //(避免)完全平方算两次
  38.             }  
  39.         }  
  40.         printf("%d\n",ans);  
  41.     }  
  42.     return 0;  
  43. }  


2.POJ2480

这里要注意一个问题:对于所有小于N的数字,和N互质的数和N的因数并不能覆盖从1到N的所有数,比如N=6,4既不是6的因数也不和6互质,对于所有因数的gcd的和很好求(简单排列组合),但是对于这些既不是因数也不互质的数,不是那么简单。

因此我想暴力实现,但是发现折半搜索失败了。原因是因为折半搜索只能搜索一个数字的因数,像刚才那样的N=6来说,4是没有被搜索到的

所以,想用整除性来搜索全部数字,是不可能的


利用积性函数的做法:

在数论中的积性函数:对于正整数n的一个函数 f(n),当中f(1)=1且当a,b互质,f(ab)=f(a)f(b),在数论上就称它为积性函数。若某函数f(n)符合f(1)=1,且就算a,b不互质,f(ab)=f(a)f(b),则称它为完全积性函数。

欧拉函数,gcd(n,k)(当k固定时)都是积性函数

且当i,j互素时,gcd(i*j,m)=gcd(i,m)*gcd(j,m),所以gcd(n,k)是积性函数

同时,积性函数的和也是积性函数

下文来源:http://lydws.blog.163.com/blog/static/22621105120152265175340/

大概只有我这种人不会做。。。
看了lyd大神(和我的名字好像。。。)的题解,有些懂了: 大神链接
主要考察一个叫积性函数的东西:f(x*y)=f(x)*f(y),中学数学经常见到。
积性函数还有个性质就是积性函数的和也是积性函数。
可以得到一个式子f(n)=f(p1^a1)*f(p2^a2)*f(p3^a3)*...*f(pk^ak)。不过目前我们不知道这个式子有什么用,6666666666666666。
再看本题,如果n和m互质,那么gcd(i,n*m)=gcd(i,n)*gcd(i,m)。∴gcd(i,n)是积性函数==>Σgcd(i,n)是积性函数。
设f(n)=Σgcd(i,n),问题转换为求出所有f(pi^ai)。
下面来求f(pi^ai):
首先明确,如果p是n的约数,那么满足gcd(i,n)==p的i的个数是Φ(n/p)。
证明:gcd(i,n)==p。设i=k*p,n=m*p。
则gcd(k,m)=1,也就是k和m互质,要求出满足条件的i的个数,就是求出i所对应的k的个数,即求m的欧拉函数,m=n/p,所以满足条件的i的个数就是Φ(m)=Φ(n/p)。
好了,用这种原则来求f(pi^ai),就是枚举pi^ai的每个约数(其实就是pi^t,t<=ai),然后求使gcd(i,pi^ai)==pi^t满足的i的个数,所以 个数*pi^t就是要求的答案的一部分。
公式: f(pi^ai)=Φ(pi^ai)+pi*Φ(pi^(ai-1))+pi^2*Φ(pi^(ai-2))+...+pi^(ai-1)* Φ(pi)+pi^ai*Φ(1);
这里可以把求欧拉函数的部分化简,因为f(pi^ai)中只有一个约数pi,所以:
Φ(pi^ai)=pi^ai-pi^(ai-1)。
证明:小于pi^ai的正整数个数为p^ai - 1个;
其中,和pi^ai不互质的正整数有(pi*1,pi*2,...,pi*(pi^(ai-1)-1) )共计 pi^(ai-1)-1个。
Φ(pi^ai)=pi^ai -1 -(pi^(ai-1)-1)=pi^ai-pi^(ai-1)
然后整理得:f(pi^ai)= pi^ai*(1+ai*(1-1/pi))。
所以, f(n)=n*(1+a1*(1-1/p1))*(1+a2*(1-1/p2))*.…… =n* π(ai*pi+pi-ai)/pi;
本题解决!!!

写了两个小时,写完了,发现自己好弱,大神的一句话我都得反复琢磨还要问老师各种证明才能弄懂,差距很大,好大的压力。。。


弃坑

 3.HODJ 3501

小于N并且不互质的数字和

注意:判断互质不能用N%i==0,比如6,4,判断互质的方式是GCD

N的范围是32位整数范围

直观想法: 所有小于n且与n为非互质数和=所有小于n数的和-所有小于n且与n互质的数的和

 
原理:
 求所有小于N且与N为互质数的和:
        1.欧拉函数可求与N互质的数的个数
        2.
if gcd(n,i)=1 then gcd(n,n-i)=1 (1<=i<=n)
若已知m与n互质,则n-m也与n互质
 
那么,对于任何一个i与n互质,必然n-i也和n互质,所以PHI(N)必然是偶数(除了2)
所以从1到N与N互质的数的和为PHI(N)*N/2(一对一对算) 



<think>嗯,用户想知道如何用编程实现欧拉函数求法。首先,我得回忆一下欧拉函数的定义。欧拉函数φ(n)是小于n且n互质的正整数的个数。那怎么计算呢? 根据引用里的资料,用户提到了筛法和直接计算两种方法。比如引用2提到用筛法计算范围内所有数的欧拉函数值,而引用4中的C++代码则是通过遍历每个数,检查最大公约数是否为1来统计互质数的个数。这两种方法各有优劣,筛法适合批量计算,效率更高;而直接计算适合单个数的情况,但复杂度可能较高。 首先,我应该解释欧拉函数的基本概念,然后分步骤介绍不同的实现方法。比如,可以分成直接计算法和筛法优化法。直接法就是对于给定的n,遍历1到n-1的数,检查每个数是否n互质,统计个数。这种方法简单直观,但时间复杂度是O(n log n),对于大的n来说效率不高。 然后筛法的话,类似于埃拉托斯特尼筛法,初始化一个数组phi,初始时phi[i] = i,然后遍历每个质数p,将phi[p]的倍数进行调整,乘以(1-1/p)。这种方法可以在O(n log log n)的时间复杂度内计算出1到n所有数的欧拉函数值,效率更高,尤其是需要计算多个数的欧拉函数时。 用户提供的引用中有C#、Java、C++的例子,我需要用这些作为参考,确保代码的正确性。比如,引用4中的C++代码用了遍历的方法,而引用2提到了筛法。我应该给出这两种方法的示例代码,比如用Python实现,这样用户更容易理解。 另外,用户可能想知道不同方法的应用场景。比如,当需要计算单个数的欧拉函数时,直接法可能更简单,而需要大量计算时,筛法更优。同时,要注意处理边界情况,比如n=0或1时的情况,但根据定义,φ(1)=1,而n<=0时可能没有定义,需要代码中进行判断。 在代码实现时,互质检查可以通过计算最大公约数是否为1,这可以用欧几里得算法来实现。筛法的部分,需要正确初始化数组,并正确处理每个质数的倍数。 可能的问题点:筛法的具体实现步骤是否正确,如何处理质因数分解后的调整。例如,在筛法中,对于每个质数p,遍历其倍数,如果该数能被p整除,则乘以(p-1)/p。这部分需要正确实现,可能需要分解质因数,但筛法其实可以结合质因数分解的过程。 还需要考虑用户是否了解欧几里得算法,所以在代码中可能需要给出最大公约数的实现,或者使用语言内置的函数。例如,Python中的math.gcd,但要注意处理负数,不过欧拉函数的参数是正整数,所以输入应该已经处理过。 总结下来,回答的结构应该是: 1. 欧拉函数的定义 2. 直接计算法:步骤和代码示例 3. 筛法优化:步骤和代码示例 4. 应用场景和注意事项 然后生成相关问题,比如时间复杂度、优化方法、应用场景等。 现在需要检查引用中的资料是否准确。比如引用4的C++代码确实是通过遍历并计算最大公约数来统计互质数的个数,正确。筛法的部分,引用2提到利用质因数的关系,所以筛法代码需要正确反映这一点。 在写筛法的Python代码时,应该初始化一个数组,然后从2开始遍历,如果是质数,则更新其倍数的phi值。例如: 初始化phi数组为0到n,然后对于每个i从2到n,如果i未被处理过(即phi[i]还是i),则遍历i的倍数j,将phi[j] *= (i-1)/i,并除以i的指数次幂。或者更准确的做法是,对于每个质数p,处理每个p的倍数,先除以p的所有因子,然后乘以p-1。这部分可能需要更详细的步骤。 或者,正确的筛法实现是: phi = list(range(n+1)) for p in 2到n: if phi[p] == p(说明是质数): for j in p的倍数: phi[j] -= phi[j] // p 或者另一种方式,类似于埃筛,对于每个质数p,遍历其倍数j,然后phi[j] *= (p-1)/p,但需要确保p是j的质因数。这可能比较复杂。 正确的筛法实现应该是,首先将phi数组初始化为索引值,然后对于每个质数p,遍历其倍数,并将phi[j]乘以(p-1)/p,但需要确保每个质数只处理一次。例如: def euler_sieve(n): phi = list(range(n+1)) for p in range(2, n+1): if phi[p] == p: # p是质数 for j in range(p, n+1, p): phi[j] -= phi[j] // p return phi 这样,对于每个质数p,处理其倍数j,将phi[j]乘以(1 - 1/p),即phi[j] *= (p-1)/p,但由于整数运算,可以用减法代替。例如,phi[j]初始为j,当处理p时,phi[j] = j * product( (1 - 1/p_i) ),其中p_i是j的质因数。这样,每当遇到一个质因数p,就将phi[j]减去phi[j]//p,这样等价于乘以(1-1/p)。这需要确认是否正确。 例如,当p是j的一个质因数,假设j的当前phi值为原来的phi值,此时处理p时,phi[j] -= phi[j]//p,相当于phi[j] = phi[j] * (1 - 1/p),因为原来的phi[j]是j乘以已经处理过的质因数的乘积。例如,当j=6,初始phi=6,当处理p=2时,phi[6] =6 -6//2=6-3=3;当处理p=3时,phi[6]=3 -3//3=3-1=2,而φ(6)=2,正确。所以这种方法是可行的。 因此,筛法的实现是正确的。所以,在回答中需要解释这两种方法,并给出相应的代码示例。同时,注意引用的来源,比如引用2和4中的方法,所以在回答末尾添加引用标识。 最后,生成相关问题,例如不同的实现方法的比较、时间复杂度分析、应用场景等。</think>### 欧拉函数的编程实现方法 欧拉函数 $φ(n)$ 表示小于 $n$ 且 $n$ 互质的正整数的个数。以下是两种常用的编程实现方法: --- #### **方法一:直接计算法(基于最大公约数)** **步骤**: 1. 遍历 $1$ 到 $n-1$ 的所有整数。 2. 对每个整数 $k$,检查 $\gcd(n, k) = 1$。 3. 统计符合条件的 $k$ 的总数。 **Python 示例**: ```python import math def euler_phi(n): count = 0 for k in range(1, n): if math.gcd(n, k) == 1: count += 1 return count ``` **时间复杂度**:$O(n \log n)$,适用于小规模计算[^4]。 --- #### **方法二:筛法优化(批量计算)** **步骤**: 1. 初始化数组 `phi`,令 `phi[i] = i`。 2. 遍历 $2$ 到 $n$,若 $i$ 是质数,则调整其倍数的欧拉函数值。 3. 调整规则:对每个质数 $p$,其倍数 $j$ 的欧拉值为 $\phi[j] = \phi[j] \cdot (1 - \frac{1}{p})$。 **Python 示例**: ```python def euler_sieve(n): phi = list(range(n + 1)) for p in range(2, n + 1): if phi[p] == p: # p是质数 for j in range(p, n + 1, p): phi[j] -= phi[j] // p return phi ``` **时间复杂度**:$O(n \log \log n)$,适合计算区间内所有数的欧拉函数[^2]。 --- #### **应用场景** - **直接计算法**:适用于单次查询或小范围计算(如 $n \leq 10^6$)。 - **筛法优化**:适用于需要多次查询或批量计算(如预处理 $1$ 到 $10^7$ 的欧拉函数值)。 --- #### **注意事项** 1. 输入 $n$ 需为正整数,否则需做异常处理。 2. 筛法实现需注意数组初始化和质数判断逻辑[^3]。 ---
评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值