山东大学软件学院计算机网络往年题,山东大学软件学院计算机视觉(考试)——期末考试回忆版...

2020-2021年度山东大学软件学院计算机视觉考试 数字图像处理课程的也可以参考一下 大部分的题目都与去年的一致 也与复习课上复习的内容一致 考试时间 2020年12月3日 8:00-10:00 “~~~”表示忘记的 一、单项选择题

2020-2021年度山东大学软件学院计算机视觉考试,数字图像处理课程的也可以参考一下

大部分的题目都与去年的一致,也与复习课上复习的内容一致

考试时间:2020年12月3日 8:00-10:00

“~~~”表示忘记的

一、单项选择题(20分)

一幅256*256的单通道图像,灰度级为16,则存储该图像需要的比特数为()

A.256k B.512k C.1M D.2M

图像和灰度直方图的对应关系为()

A.一对一 B.一对多 C.多对一 D.都不对

背景为浅色,目标前景为深色圆环,用那种滤波器可以使圆环变细()

A.中值滤波器 B.最小值滤波器 C.最大值滤波器 D.~~~

下列哪个算子是二阶微分算子()

A.Roberts算子

B.~~~

C.Sobel算子

D.Laplacian算子

模板[

?

1

,

1

]

[-1, 1][?1,1]提取的是()边缘

A.水平 B.45度 C.垂直 D.135度

下列关于傅里叶变换说法错误的是()

A.傅里叶频谱中心表示低频信息

B.傅里叶频谱~~~

C.傅里叶变换的结果都是实数

D.f(x, y)乘以(

?

1

)

x

+

y

(-1)^{x+y}(?1)x+y中心化

点源函数的傅里叶频谱是网格状的,如果点源半径变大,则()

A.傅里叶频谱不变

B.傅里叶频谱网格变密

C.傅里叶频谱网格变暗

D.傅里叶频谱旋转

灰度共生矩阵中,表示纹理的非均匀程度或复杂程度的是()

A. 能量 B.熵 C.对比度 D.均匀性

Laws的步骤为:微窗口变换 -> 能量转换 -> 分量旋转 -> 分类

设根据协方差矩阵算出的4个特征值分别为2,3,4,5,如果只用一半的特征值来计算重建图像,那么原始图和重建图间的均方误差为()

A.3 B.4 C.5 D.7

二、简答题(30分)

图像数字化的两个步骤是什么?数字化的参数对图像质量有什么影响?

说明Harris角点检测的算法步骤

说明模板匹配和Hough变换的联系,分析比较在检测共线点时两个算法的计算量

一幅图像,背景的均值为110,标准差为20;在背景上分布着均值为200,标准差为45的目标像素点,试提出一种区域增长的方法将目标分割出来

在立体视觉匹配中,理论上有高精度的结果,由于定参数和计算不确定性,会有较大误差,请提出一些解决办法

使用4邻域模板和8邻域模板提取边缘的区别

三、计算题(30分)

写出M(0,0)和M(1,0)的计算表达式,并说明M

(

1

,

0

)

M

(

0

,

0

)

\frac {M(1,0)} { M(0,0)}M(0,0)M(1,0)?的物理意义

在极坐标系中一点r

=

0.8

r=0.8r=0.8, θ

=

30

\theta=30θ=30度,对应直角坐标系中是什么图形,并给出表达式

写出直方图均衡化的灰度变换公式,p

0

(

r

0

)

=

0.17

p_{0}(r_{0}) = 0.17p0?(r0?)=0.17,p

1

(

r

1

)

=

0.20

p_{1}(r_{1}) = 0.20p1?(r1?)=0.20,p

2

(

r

2

)

=

0.21

p_{2}(r_{2}) = 0.21p2?(r2?)=0.21,p

3

(

r

3

)

=

0.12

p_{3}(r_{3}) = 0.12p3?(r3?)=0.12,p

4

(

r

4

)

=

0.30

p_{4}(r_{4}) = 0.30p4?(r4?)=0.30,并求出S

2

S_{2}的值S2?的值

某图像的大小为w * h,滤波核大小为7*7,对其应用线性滤波最多需要进行多少次乘法?如果滤波核行列可拆分,最多需要进行多少次乘法?

一幅32位三通道图像,采用交叉存储,每一行的字节数为step,共有weight行,high列

(1)求像素p的八邻域的存储位置

(2)(0,0)的存储位置是data,求I

(

x

,

y

)

I(x, y)I(x,y)的存储位置

求下面图像中字符的欧拉数(图像我就不画了)

四、算法题(10分)

请写出自适应中值滤波的算法步骤,并算出下面中心像素经过自适应中值滤波后的值

2d2b640d6c09cbc38cc408c82d5a46cb.png

五、频域分析题(10分)

一阶导数为f

(

x

+

1

,

y

)

?

f

(

x

,

y

)

f(x+1, y) - f(x, y)f(x+1,y)?f(x,y)

(提示:f

(

x

?

x

0

,

y

?

y

0

)

?

F

(

u

,

v

)

e

x

p

[

?

j

2

π

(

u

x

0

/

M

+

v

y

0

/

N

)

]

f(x-x_{0}, y-y_{0})\Leftrightarrow F(u, v)exp[-j2\pi(ux_{0}/M+vy_{0}/N)]f(x?x0?,y?y0?)?F(u,v)exp[?j2π(ux0?/M+vy0?/N)]傅里叶变换公式为F

(

u

,

v

)

=

?

?

f

(

x

,

y

)

e

?

j

2

π

(

u

x

+

v

y

)

d

x

d

y

F(u,v)=\int_ {-\infty} ^ {\infty}\int_ {-\infty} ^ {\infty}f(x,y)e^{-j2\pi (ux+vy)}dxdyF(u,v)=∫?∞∞?∫?∞∞?f(x,y)e?j2π(ux+vy)dxdy)

(1)写出一阶导数在频率域中的滤波器函数H(u,v)的表达式

(2)证明H(u,v)是高通滤波器,并求其周期

以上信息来源于网络,如有侵权,请联系站长删除。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值