2020-2021年度山东大学软件学院计算机视觉考试 数字图像处理课程的也可以参考一下 大部分的题目都与去年的一致 也与复习课上复习的内容一致 考试时间 2020年12月3日 8:00-10:00 “~~~”表示忘记的 一、单项选择题
2020-2021年度山东大学软件学院计算机视觉考试,数字图像处理课程的也可以参考一下
大部分的题目都与去年的一致,也与复习课上复习的内容一致
考试时间:2020年12月3日 8:00-10:00
“~~~”表示忘记的
一、单项选择题(20分)
一幅256*256的单通道图像,灰度级为16,则存储该图像需要的比特数为()
A.256k B.512k C.1M D.2M
图像和灰度直方图的对应关系为()
A.一对一 B.一对多 C.多对一 D.都不对
背景为浅色,目标前景为深色圆环,用那种滤波器可以使圆环变细()
A.中值滤波器 B.最小值滤波器 C.最大值滤波器 D.~~~
下列哪个算子是二阶微分算子()
A.Roberts算子
B.~~~
C.Sobel算子
D.Laplacian算子
模板[
?
1
,
1
]
[-1, 1][?1,1]提取的是()边缘
A.水平 B.45度 C.垂直 D.135度
下列关于傅里叶变换说法错误的是()
A.傅里叶频谱中心表示低频信息
B.傅里叶频谱~~~
C.傅里叶变换的结果都是实数
D.f(x, y)乘以(
?
1
)
x
+
y
(-1)^{x+y}(?1)x+y中心化
点源函数的傅里叶频谱是网格状的,如果点源半径变大,则()
A.傅里叶频谱不变
B.傅里叶频谱网格变密
C.傅里叶频谱网格变暗
D.傅里叶频谱旋转
灰度共生矩阵中,表示纹理的非均匀程度或复杂程度的是()
A. 能量 B.熵 C.对比度 D.均匀性
Laws的步骤为:微窗口变换 -> 能量转换 -> 分量旋转 -> 分类
设根据协方差矩阵算出的4个特征值分别为2,3,4,5,如果只用一半的特征值来计算重建图像,那么原始图和重建图间的均方误差为()
A.3 B.4 C.5 D.7
二、简答题(30分)
图像数字化的两个步骤是什么?数字化的参数对图像质量有什么影响?
说明Harris角点检测的算法步骤
说明模板匹配和Hough变换的联系,分析比较在检测共线点时两个算法的计算量
一幅图像,背景的均值为110,标准差为20;在背景上分布着均值为200,标准差为45的目标像素点,试提出一种区域增长的方法将目标分割出来
在立体视觉匹配中,理论上有高精度的结果,由于定参数和计算不确定性,会有较大误差,请提出一些解决办法
使用4邻域模板和8邻域模板提取边缘的区别
三、计算题(30分)
写出M(0,0)和M(1,0)的计算表达式,并说明M
(
1
,
0
)
M
(
0
,
0
)
\frac {M(1,0)} { M(0,0)}M(0,0)M(1,0)?的物理意义
在极坐标系中一点r
=
0.8
r=0.8r=0.8, θ
=
30
\theta=30θ=30度,对应直角坐标系中是什么图形,并给出表达式
写出直方图均衡化的灰度变换公式,p
0
(
r
0
)
=
0.17
p_{0}(r_{0}) = 0.17p0?(r0?)=0.17,p
1
(
r
1
)
=
0.20
p_{1}(r_{1}) = 0.20p1?(r1?)=0.20,p
2
(
r
2
)
=
0.21
p_{2}(r_{2}) = 0.21p2?(r2?)=0.21,p
3
(
r
3
)
=
0.12
p_{3}(r_{3}) = 0.12p3?(r3?)=0.12,p
4
(
r
4
)
=
0.30
p_{4}(r_{4}) = 0.30p4?(r4?)=0.30,并求出S
2
的
值
S_{2}的值S2?的值
某图像的大小为w * h,滤波核大小为7*7,对其应用线性滤波最多需要进行多少次乘法?如果滤波核行列可拆分,最多需要进行多少次乘法?
一幅32位三通道图像,采用交叉存储,每一行的字节数为step,共有weight行,high列
(1)求像素p的八邻域的存储位置
(2)(0,0)的存储位置是data,求I
(
x
,
y
)
I(x, y)I(x,y)的存储位置
求下面图像中字符的欧拉数(图像我就不画了)
四、算法题(10分)
请写出自适应中值滤波的算法步骤,并算出下面中心像素经过自适应中值滤波后的值
五、频域分析题(10分)
一阶导数为f
(
x
+
1
,
y
)
?
f
(
x
,
y
)
f(x+1, y) - f(x, y)f(x+1,y)?f(x,y)
(提示:f
(
x
?
x
0
,
y
?
y
0
)
?
F
(
u
,
v
)
e
x
p
[
?
j
2
π
(
u
x
0
/
M
+
v
y
0
/
N
)
]
f(x-x_{0}, y-y_{0})\Leftrightarrow F(u, v)exp[-j2\pi(ux_{0}/M+vy_{0}/N)]f(x?x0?,y?y0?)?F(u,v)exp[?j2π(ux0?/M+vy0?/N)]傅里叶变换公式为F
(
u
,
v
)
=
∫
?
∞
∞
∫
?
∞
∞
f
(
x
,
y
)
e
?
j
2
π
(
u
x
+
v
y
)
d
x
d
y
F(u,v)=\int_ {-\infty} ^ {\infty}\int_ {-\infty} ^ {\infty}f(x,y)e^{-j2\pi (ux+vy)}dxdyF(u,v)=∫?∞∞?∫?∞∞?f(x,y)e?j2π(ux+vy)dxdy)
(1)写出一阶导数在频率域中的滤波器函数H(u,v)的表达式
(2)证明H(u,v)是高通滤波器,并求其周期
以上信息来源于网络,如有侵权,请联系站长删除。