用一个堆栈维护当前点所必须的烽火台编号。比如,按顺序给出A,B,C三点后,假设CB和BA叉积后我们发现BA在CA的逆时针方向(这个判断方法可以自己规定),所以在A点建立了烽火台,同时把B弹出栈。接着再给出D点,这时我们需要判断D是否在A的视野范围内,即判断CA是否在DC的逆时针方向。
复习一下叉积,向量BA和CB的叉积(b.x-a.x)*(c.y-b.y)-(b.y-a.y)*(c.x-b.x)。
若BA×CB>0,则BA在CB的顺时针方向。
若BA×CB<0,则BA在CB的逆时针方向。
若BA×CB=0,则BA在CB共线,但可能同向也可能反向。
#include <iostream> #include <string.h> #include <cstdio> #include <algorithm> #include <cstdlib> #include <math.h> #include <set> #include <map> #define maxn 100005 #define INF 0x3f3f3f3f using namespace std; typedef long long ll; int n; int vis[maxn]; struct point { ll x,y; }po[maxn]; bool cal(point a,point b,point c) { return (b.y-a.y)*(c.x-b.x)>=(b.x-a.x)*(c.y-b.y); } int main() { int tp[maxn]; int p=0,ans=0; scanf("%d",&n); tp[0]=0; memset(vis,0,sizeof(vis)); for(int i=0;i<n;i++) { scanf("%lld%lld",&po[i].x,&po[i].y); while(p>=2&&cal(po[tp[p-2]],po[tp[p-1]],po[i])) p--; vis[tp[p-1]]=1; tp[p++]=i; } for(int i=1;i<n;i++) { if(vis[i]) ans++; } printf("%d\n",ans); return 0; }