自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(1715)
  • 收藏
  • 关注

原创 “华为杯”研究生数学建模竞赛2017年-【华为杯】B题:面向下一代光通信的 VCSEL 激光器仿真模型

得出以下主要结论:在相同的偏置电流条件下,随着温度的升高,带宽的峰值向。在相同的温度下,随着电流的增大,带宽的峰值越小且曲线由波峰形状。方案,包括可能的数学公式,不同温度和偏置电流下的带宽响应曲线,并与问题。线,得出以下主要结论:在相同的偏置电流条件下,随着温度的升高,带宽的峰。在相同的温度下,随着电流的增大,带宽的峰值越小且曲线由波峰形状逐渐变得。得的激光器特性曲线和模型中仿真得到的特性曲线,之后,可以将两组曲线的差。说明的是,由于数值优化算法的成功与否很大程度上依赖于初始参数的猜测,参。

2026-01-08 00:30:00 2

原创 数学建模算法案例精讲500篇-【数学建模】数据清洗

数据清洗(Data cleaning)– 对数据进行重新审查和校验的过程,目的在于删除重复信息、纠正存在的错误,并提供数据一致性。数据清洗从名字上也看的出就是把“脏”的“洗掉”,指发现并纠正数据文件中可识别的错误的最后一道程序,包括检查数据一致性,处理无效值和缺失值等。因为数据仓库中的数据是面向某一主题的数据的集合,这些数据从多个业务系统中抽取而来而且包含历史数据,这样就避免不了有的数据是错误数据、有的数据相互之间有冲突,这些错误的或有冲突的数据显然是我们不想要的,称为“脏数据”。

2026-01-07 10:59:28 9

原创 AUTOSAR从入门到精通-【自动驾驶】RTK定位(二)

RTK定位技术(实时动态差分定位技术)是基于载波相位动态实时差分方法的高精度定位技术,通过基准站与流动站协同工作实现厘米级三维定位。基准站将观测数据及坐标信息实时传输至流动站,流动站结合自身GNSS观测数据组成差分观测值进行处理,可在1秒内完成解算,有效消除电离层延迟、对流层折射等公共误差源。该技术支持10-15公里范围内的实时动态作业,具备单人操作、无需点间通视和实时精度验证特性,广泛应用于工程放样、地形测图及控制测量。

2026-01-05 00:30:00 6

原创 AUTOSAR从入门到精通-【自动驾驶】RTK定位

RTK,英文全名叫做Real-time kinematic,也就是实时动态。这是一个简称,全称其实应该是。

2026-01-04 00:30:00 11

原创 AUTOSAR从入门到精通-【自动驾驶】多传感器时间同步

时间同步作为多传感器融合的前提,确保了多传感器数据在时间维度上的一致性,这对于数据融合的准确性和实时性至关重要。本节将详细介绍机器人平台常用的全球卫星定位系统、相机、惯性测量单元、轮速计和激光雷达信号进行时间同步的基本方法,通过确保传感器数据在时间上的一致性,为机器人的场景感知和导航等任务提供准确的时间基准。随着技术的不断发展,多传感器时间同步方案将更加完善,为轮式机器人平台的性能提升提供有力支持。在实际应用中,需要根据具体的机器人平台和应用场景,选择合适的时间同步方案,并不断进行优化和调整。

2025-12-30 00:30:00 24

原创 AUTOSAR从入门到精通-【自动驾驶】激光雷达点云中“鬼影”和“膨胀”问题

点云噪点是指激光雷达采集到的一些无效点,它容易造成目标检测算法模型的误检。激光点云噪点的主要来源有两方面:一方面是目标物表面造成的噪点。比如,目标物表面材质的性质(高反射率的表面材质引起的点云反射能量过强,而使得目标物比实际大小更大)、粗糙程度(凹凸不平的表面使得点云的发射角度发生变化)等;另一方面是外部扫描环境造成的噪点,如雨雪雾尘等颗粒物遮挡了点云而无法反射回点云等。点云噪点的处理主要集中在预处理阶段的滤波处理环节。滤波处理是从算法应用的角度来处理噪点,但是有些噪点并不能简单地通过滤波算法来处理。

2025-12-29 00:30:00 27

原创 AUTOSAR从入门到精通-【自动驾驶】多传感器时间同步(二)

智能汽车的核心是通过多维度感知、实时决策和精准控制实现辅助驾驶与智能交互,而这一切的前提是 “时间基准一致”,由于不同传感器采集数据的频率、机制不同,只有在时间基准一致的情况下,数据融合、控制反馈才能准确进行,等情况。时间同步技术看似基础,却是保障智能汽车安全、高效运行的 “隐形骨架”。时间同步:分布式系统的“隐形时钟管家”时间同步技术是指通过硬件、协议或算法,使多个独立系统、设备或节点的时钟基准保持一致(或误差控制在可接受范围)的技术体系。

2025-12-27 00:30:00 25

原创 AUTOSAR从入门到精通-【自动驾驶】纵向端到端自动驾驶

传统E2E方法侧重于通过显式或隐式的场景表征,直接输出轨迹,其优势在于系统集成度高、执行效率快且在结构化场景下稳定性强,能够有效减少模块间的信息丢失和错误累积,是目前车企落地最广泛的实战派。

2025-12-24 00:30:00 47

原创 AUTOSAR从入门到精通-【自动驾驶】端到端(E2E)

传统模块化智驾将任务拆解为感知、预测、规划,每个任务对应一个子模块并单独训练,这种割裂的训练导致了严重的信息丢失和误差累积,难以应对复杂场景。传统端到端、以大模型为中心的端到端、以及混合端到端。图 1 端到端自动驾驶范式对比。(a)(b)传统端到端、(c)以大模型为中心的端到端、(d)(e)混合端到端。

2025-12-23 00:30:00 39

原创 AUTOSAR从入门到精通-【自动驾驶】特斯拉全自动驾驶(FSD)

特斯拉全自动驾驶系统(Full-Self Driving,简称FSD)是特斯拉公司开发的高级驾驶辅助系统,旨在通过神经网络技术实现环境感知与车辆控制,在驾驶员监督下完成导航、转向、变道、泊车等操作。‌ 该系统自2021年发布Beta测试版以来持续迭代,最新版本为2025年10月推出的v14版本。‌FSD v14版本基于端到端神经网络架构,取代了传统代码逻辑,通过数百万视频片段训练模型,以模仿人类驾驶决策。‌ 其功能覆盖住宅区街道、城市道路及高速公路,支持交通信号识别、自动变道和环岛通行等场景。

2025-12-22 00:30:00 44

原创 数学建模算法案例精讲500篇-【数学建模】非凸损失函数优化(二)

在实际解决问题过程中,都希望我们建立的目标函数是凸函数,这样我们不必担心局部最优解问题,但实际上,我们遇到的问题大多数情况下建立的目标函数都是非凸函数,因此我们需要根据场景选择不同的优化方法。我们在寻找优化方法论时,一定要选择更合理的方法论。很多非凸优化问题可以转化(并非是等价的)为凸优化问题,并给出问题的近似解。当非凸优化应用到机器学习中时,目标函数可以允许算法设计者编码适当和期望的行为到机器学习模型中,例如非凸优化中的目标函数可以表示为衡量拟合训练数据好坏的损失函数。

2025-12-21 00:30:00 24

原创 数学建模算法案例精讲500篇-【数学建模】非凸损失函数优化

非凸优化问题是指目标函数或约束条件中存在至少一个非凸(即“非向下弯曲”)成分的优化问题。与凸优化问题不同,非凸优化问题的解空间可能存在多个局部最优解,且这些局部最优解未必是全局最优解,因此求解难度显著增加。1. 非凸优化的核心特征非凸目标函数:函数图像存在“凹陷”或复杂弯曲(如多个波峰波谷)。例如:f(x)=sin⁡(x)+x^2(既有凸部分又有非凸振荡)。非凸约束集:可行域的形状复杂,如非凸多边形或离散点集。例如:约束条件 x∈{0,1}(整数规划问题)。2. 与凸优化的关键区别。

2025-12-20 00:30:00 20

原创 “华为杯”研究生数学建模竞赛2018年-【华为杯】E题:多无人机对组网雷达的协同干扰(续)(附MATLAB代码实现)

参考文献4.3 模型二的建立与求解相较于问题一模型,问题二中不再规定无人机的航向、航速、飞行高度以及匀速直线运动的运动状态。在需要同样地完成附件 1 中 20 个时刻的虚假目标位置坐标点过程中,每一架无人机的速度、航向可以改变,这也使更少数量的无人机即可完成附件一中虚假航线。但题目对于无人机运动状态做出了尽可能少做转弯、爬升、俯冲等机动动作,转弯半径不能过小等要求。在完成规定虚假航线的前提下,由于每一架无人机同一时刻可产生多个假目标信息,所以还可以产生多条虚假航迹。

2025-12-18 00:30:00 26

原创 “华为杯”研究生数学建模竞赛2018年-【华为杯】E题:多无人机对组网雷达的协同干扰

首先建立单机干扰单部雷达的模型,如图 4.1 所示,描述了单机干扰单部雷达时。状态,然后在第二题的基础上,以最大化虚假航迹数目为优化目标,以飞行高度、行航迹进行优化,探求理想化飞行轨迹及与实际轨迹的差别,完善飞行轨迹模型。化算法,建立了求解无人机航迹和虚假航迹的非线性规划模型,并基于仿真计算。与编程优化,得到了满足目标航迹点的无人机飞行轨迹和附加产生的虚假航迹。人机的飞行速度,将问题简化为一架无人机至多干扰一部雷达的模型。的限制,移动剩下自由的无人机,通过搜索算法来找到可能的虚假航迹点,由此。

2025-12-17 00:30:00 32

原创 AUTOSAR从入门到精通-【自动驾驶】模仿学习(IL)

模仿学习(Imitation Learning)也被称为基于演示的学习(Learning By Demonstration)或者学徒学习(Apprenticeship Learning)。机器是可以与环境进行交互的,但是大部分情况下,机器却不能从这个过程中显示的获得奖励(例外是类似于马里奥之类的游戏,显然获得的分数就是奖励)。

2025-12-14 00:30:00 33

原创 AUTOSAR从入门到精通-【自动驾驶】模仿学习(IL)(二)

模仿学习有人又称为学徒制学习,示范学习,但又有人觉得只有逆向强化学习才能称为学徒制学习。示范学习就是人类示范给机器,让机器去模仿学习。不同于加强学习,在模仿学习中,机器可以与环境互动,但并不会得到Reward,因此模仿学习并非受到Reward影响,主要还是受到专家展示启发。Reward不好定义如果手工制作的奖励可能会造成无法控制的行为,考试要100分是目标,那机器可能学到的是作弊就能100分。行为克隆Behavior Cloning。

2025-12-13 00:30:00 22

原创 AUTOSAR从入门到精通-【自动驾驶】数据标注(二)

自动驾驶数据标注中人员培训与管理是保证标注质量的根基。标注人员需要理解自动驾驶感知的基本原理,才能准确区分不同交通要素。此外还要熟练掌握标注工具的各项功能。定期组织培训与考核,形成知识库与常见问题解答,并通过标注示例和对比案例帮助标注员理解规范细节。在标注流程中,质量控制尤为关键。可在标注的不同阶段设置多级审校机制,初级标注完成后进行自检,中级审核员复查,再由高级专家进行抽样验证;对于发现的问题,要及时反馈给标注员并迅速修正。

2025-12-11 00:30:00 40

原创 AUTOSAR从入门到精通-【自动驾驶】数据标注

自动驾驶数据标注是指在自动驾驶系统所采集的感知数据(如摄像头图像、激光雷达点云、毫米波雷达等)中,为各种交通要素(车辆、行人、交通标志、车道线等)手动或半自动地添加类别标签和空间标记(如边界框、多边形轮廓、实例ID、时序关联等)的过程。通过准确、规范的标注,机器学习模型才能够从海量原始数据中学习到目标的特征与行为模式,实现对真实道路环境的感知、理解与预测。高质量的标注不仅是训练和评估算法性能的基础,也直接关系到自动驾驶系统的安全性和可靠性。自动驾驶数据标注就像给汽车“贴标签”和“画地图”。

2025-12-10 00:30:00 60

原创 AUTOSAR从入门到精通-汽车ECU标定

即使同一生产线的发动机,零部件(如喷油器、节气门)的加工精度也存在细微差异,导致相同控制信号下的实际输出不同。同时,不同市场用户对驾驶体验的偏好不同(如欧洲用户偏好动力响应,东南亚用户偏好经济性),可通过标定调整动力输出特性实现差异化适配。内部控制参数(如喷油脉宽、点火提前角、节气门开度等),使被控系统(如发动机)在全工况范围内达到性能最优的过程。(像狙击手既要打十环,还要保证连续射击的稳定性)。标定也得在台架、实车上迭代:从怠速到全负荷,模拟高温、高原等环境,把喷油、点火、增压这些参数磨到精准,既要。

2025-12-08 00:30:00 45

原创 数学建模算法案例精讲500篇-【数学建模】Floyd路径算法

Floyd算法(弗洛伊德算法)是一种用于求解给定加权图中所有顶点对之间最短路径的经典动态规划算法,由罗伯特·弗洛伊德(Robert Floyd)于1962年提出。‌与Dijkstra算法仅能求解单源最短路径(从一个顶点出发到其他顶点的最短距离)不同,Floyd算法可解决多源最短路径问题(任意两点间的最短距离)。

2025-12-07 00:30:00 26

原创 数学建模算法案例精讲500篇-【数学建模】Floyd路径算法(二)

Floyd算法又称为插点法,是一种利用动态规划的思想寻找给定的加权图中多源点之间最短路径的算法,与Dijkstra算法类似。从任意一条单边路径开始。所有两点之间的距离是边的权,如果两点之间没有边相连,则权为无穷大。对于每一对顶点 u 和 v,看看是否存在一个顶点 w 使得从 u 到 w 再到 v 比已知的路径更短。如果是更新它。把图用邻接矩阵G表示出来,如果从Vi到Vj有路可达,则Gij=d,d表示该路的长度;否则Gij=无穷大。

2025-12-06 00:30:00 30

原创 AUTOSAR从入门到精通-汽车ECU标定(三)

ETAS公司的INCA作为传统标定工具的代表,提供了强大的功能和丰富的插件支持,特别适合大型整车企业的复杂标定需求。这些工具通常支持项目化管理,能够保存标定工程的完整状态,包括参数设置、测量配置和实验数据,便于后续的数据分析和追溯。XCP协议包含了3个部分,主要分为XCP驱动层(XCP是如何进行数据传输的)、A2L文件(用于定义通讯所需信息)的格式描述和自动化标定的工具的介绍。通过标定系统,我们可以轻松地读取ECU中的标定变量数据,并在标定平台上进行编辑和修改,将控制算法转化为C语言或其他编程语言的代码。

2025-12-05 00:30:00 59

原创 AUTOSAR从入门到精通-汽车ECU标定(二)

明确标定覆盖的怠速工况,包括“冷机怠速(水温20℃)、热机怠速(水温85℃)、负载怠速(开启空调/大灯)”三类典型场景,针对每类场景设定转速目标(冷机850rpm、热机750rpm、负载900rpm)与油耗上限。

2025-12-04 00:30:00 34

原创 AUTOSAR从入门到精通-Fee算法与Block类型

FEE算法是AutoSAR中用于Flash EEPROM仿真的核心机制,通过Block(数据块)管理实现非易失性数据的可靠存储。

2025-12-02 00:30:00 36

原创 数学建模算法案例精讲500篇-【数学建模】隔离森林(iForest)(二)

孤立森林 iForest(Isolation Forest)是一种无监督的异常检测算法,能处理大规模的多维数据。其基本原理是:异常数据由于数量较少且与正常数据差异较大,因此在被隔离时需要较少的步骤(异常样本更容易快速落入叶子结点,或者说异常样本在DT上,距离根节点更近)。两个假设:1. 异常样本占比很小(如果占比太高,可能被识别为正常的);2. 异常样本与正常样本差异较大(主要是全局上都为异常的异常,局部小异常可能发现不了,因为差异并不大)。

2025-12-01 00:30:00 26

原创 数学建模算法案例精讲500篇-【数学建模】隔离森林(iForest)

工作的过程中经常会遇到这样一个问题,在构建模型训练数据时,我们很难保证训练数据的纯净度,数据中往往会参杂很多被错误标记的脏数据,而数据的质量决定了最终模型性能的好坏。如果进行人工二次标记,成本会很高,我们希望能使用一种无监督算法帮我们做这件事,异常检测算法可以在一定程度上解决这个问题。异常检测分为离群点检测(outlier detection)以及奇异值检测(novelty detection)两种.离群点检测:适用于训练数据中包含异常值的情况,例如上述所提及的情况。

2025-11-29 00:30:00 40

原创 AUTOSAR从入门到精通-Fee算法与Block类型(二)

Fee组件实现FLASH的模拟EEPROM功能,即更合理的分配FLASH的资源,通过软件算法更大限度的利用FLASH延长使用寿命。Fee组件位于Memory Hardware Abstraction层里,为上层MemIf提供接口,下层是Fls组件。Fee是Fls组件的抽象层,实现FLASH的模拟EEPROM功能,用户调用读写等接口后,在Fee_MainFunction()执行模拟EEPROM策略后计算要写的地址、数据,再调用Fls里的接口实现读写擦。

2025-11-28 00:30:00 48

原创 数学建模算法案例精讲500篇-【数学建模】符号回归算法(gplearn)(附python代码实现)

符号回归(Symbolic Regression)是一种有监督的机器学习方法,用于发现某种隐藏的数学表达式或函数,以最佳地拟合给定的数据集。与传统的回归方法不同,符号回归不仅仅是找到一个数学模型的参数,而是通过搜索和组合基本数学运算符和函数,自动构建出一个数学表达式。同时,符号回归也是为数不多的可解释机器学习方法。相比于线性回归的只能表示线性关系,符号回归能够输出更加复杂的非线性关系(+、-、*、/、sin、cos、exp等)。

2025-11-26 00:30:00 39

原创 数学建模算法案例精讲500篇-【数学建模】交替方向法(ADMM)(二)(附MATLAB和python代码实现)

ADMM算法是一种用于解决具有可分离结构的凸优化问题的分布式算法。它将原始问题分解为多个子问题,每个子问题在各自的节点上独立求解,并通过迭代更新变量和拉格朗日乘子来实现全局优化。ADMM算法具有形式简单、收敛性好、鲁棒性强等优点,且不要求子优化目标函数严格凸和有限。ADMM算法的基本原理在于将复杂的全局优化问题分解为更易处理的局部优化问题,然后通过协调步骤使它们协同工作以达到全局最优。主问题优化:关注全局变量。辅问题优化:关注局部分解变量。乘子更新:通过拉格朗日乘子来协调两者的差异。

2025-11-24 00:30:00 34

原创 数学建模算法案例精讲500篇-【数学建模】交替方向法(ADMM)(附MATLAB和python代码实现)

ADMM算法,全称为交替方向乘子法(Alternating Direction Method of Multipliers),是一种用于解决优化问题的迭代算法,特别是那些可以分解为多个子问题的优化问题。ADMM结合了拉格朗日乘子法和分裂方法的特点,通过交替优化原问题的分裂子问题和更新乘子来逼近全局最优解。它在处理大规模和分布式优化问题时特别有效,广泛应用于机器学习、信号处理、统计学习、图像处理等领域。ADMM算法的基本思想是将一个复杂的优化问题分解为几个更简单的子问题,这些子问题可以更容易或更高效地求解。

2025-11-22 00:30:00 49

原创 点云从入门到精通技术详解100篇-基于线结构光的焊缝三维检测(下)

结构光平面的标定是目时为了获取目标的深度信息,因此引入激光器,当结构光线 条打在目标的表面时,形成一个结构光平面,通过对该平面的标定可以计算得到其平面 方程,这样通过平面与物体相交点的坐标值,可以获取目标表面的三维信息,完成物体 的三维检测。结构光平面标定的方法种类繁多,其中比较主流的方法有交比不变性原理结构光平 面标定、矢量叉乘法结构光平面标定等等,本节通过对这些方法中的原理进行推敲,推 导出适合本次实验的结构光平面标定方法。(1)交比不变性。

2025-11-19 00:30:00 39

原创 点云从入门到精通技术详解100篇-基于线结构光的焊缝三维检测(中)

通过上文中对于相机传感器各种配件的性能参数的计算,以及对三角测量原理原理 的分析以及其使用场合的研讨,最后对相机传感器的结构进行了设计,其结构如下图2.8 所示:相机传感器整体由外壳、相机、镜头、激光器、插座、信号灯和两个夹紧装置组成 总质量大约为137克。

2025-11-17 00:30:00 85

原创 点云从入门到精通技术详解100篇-基于线结构光的焊缝三维检测

随着工业现代化的快速推进,当今工业领域对于检测技术的需求也日益提升,传统 的检测工具如千分尺、测距仪以及三坐标测量机等以接触式为主要检测方式的工具已经 无法满足工业检测对于精度的需求。而一些非接触式检测技术如激光扫描仪、超声波检 测器等由于其实时性、非接触性以及检测精度高等特点逐渐步入工业检测的平台,成为 检测领域的研究热点之一。本文以高危环境下的焊接视觉检测工作为背景,对基于线结构光的焊缝三维检测关 键技术做应用研究。

2025-11-15 00:30:00 39

原创 数学建模算法案例精讲500篇-【数学建模】DBSCAN聚类算法(二)

请注意,这种方法在数据点非常多时可能会占用大量内存,因为需要存储一个大小为 N×N 的矩阵,其中 N 是数据点的数量。所以,它更适合于中小规模的数据集。该算法将具有足够密度的区域划分为簇,并在具有噪声的空间数据库中发现任意形状的簇,它将簇定义为密度相连的点的最大集合。以上代码常规的实现方案,但有一个问题,当需要调整 dbscan 的超参数 eps 和 min_samples 每次都要重复计算,等待的时间非常的长。在DBSCAN算法中,聚类”簇”定义为:由密度可达关系导出的最大的密度连接样本的集合。

2025-11-11 00:30:00 63

原创 “华为杯”研究生数学建模竞赛2018年-【华为杯】D题:基于卫星高度计海面高度异常资料 获取潮汐调和常数方法及应用(续)

点,根据该点到其最近两条上(下)行轨的距离比,在这两条上(下)行轨间的。下(上)行轨上可找到与该点具有相同距离比的一系列点,对这些点的调和常数。得到一定数量的数据,即沿轨道的潮高。常数,利用计算出来的调和常数进行插值,可以得到研究区域内的任意点的调和。法,将稀疏的、不规则分布的数据插值加密为规则分布的数据,以适合绘图的需。性插值,即计算出研究区域内任意点的调和常数,通过对插值效果的分析比较来。有陆地的同潮图(即左边的)为相关资料的同潮图,进行对。同样,对迟角的高次多项式拟合得到的绝均差也不一定小,

2025-11-09 00:30:00 46

原创 “华为杯”研究生数学建模竞赛2018年-【华为杯】D题:基于卫星高度计海面高度异常资料 获取潮汐调和常数方法及应用

摘要:本文基于TOPEX/POSEIDON卫星高度计数据,采用最小二乘法提取了南海区域M2、S2、K1、O1四个主要分潮的潮汐调和常数。通过建立阈值-误差反馈模型,确定了75次观测次数阈值,使调和常数计算精度达到振幅误差±10cm内、迟角误差小于10°。针对正压潮与内潮分离问题,提出了11次多项式拟合方法,实现了有效的信号分离。同时构建了两种空间插值模型(多项式拟合和B样条插值)来绘制南海同潮图。研究结果表明,该方法能准确提取潮汐调和参数,为海洋潮汐研究和工程应用提供了可靠的数据支持。

2025-11-07 00:30:00 62

原创 数学建模算法案例精讲500篇-【数学建模】DBSCAN聚类算法

DBSCAN(Density-Based Spatial Clustering of Applications with Noise)是一种基于密度的聚类算法,将簇定义为密度相连点的最大集合,可在噪声数据中发现任意形状的聚类。其核心概念包括Ε邻域、核心对象、密度可达和密度相连,通过参数扫描半径(eps)和最小包含点数(minPts)确定簇结构。该算法通过递归扩展核心对象的邻域形成聚类,无需预设簇数量且对数据顺序不敏感,但参数选择和密度变化会影响结果。

2025-11-05 14:25:46 204

原创 AUTOSAR从入门到精通-DEM(Diagnostic Event Manager,诊断事件管理器)(二)

Dem全称为Diagnostic Event Manager,负责故障事件的处理、故障数据的存储和管理。简单说其功能是故障事件确认前的故障debounce,故障事件确认时的故障数据存储,故障发生后的故障老化、故障替代(AUTOSAR的故障存储策略)。AUTOSAR标准中对Dem模块最上层分了两菜单栏(参见图1),分别是DemConfigSet,DemGeneral。

2025-11-02 16:20:05 136

原创 AUTOSAR从入门到精通-BSW层CAN驱动模块的CANif模块(二)

CanIf 模块位于底层的(CAN控制器,收发器)驱动和更上的通信服务层(CAN状态管理,CAN网络管理,CAN传输层)之间。CanIf模块是上层通信模块与CanDrv之间的服务接口。CanIf模块提供统一的接口来管理CAN硬件设备(CAN控制器,CAN收发器)。因此,CanSM模块可以基于物理CAN通道来控制多个底层内部和外部CAN控制器/CAN收发器。所有独立于硬件的CAN驱动功能接口组成了CanIf模块,这些独立于硬件的CAN驱动功能接口属于相应ECU的CAN通信设备驱动程序。

2025-10-29 00:30:00 71

原创 AUTOSAR从入门到精通-BSW层CAN驱动模块的CANif模块(三)

AUTOSAR(Automotive Open System Architecture) 提供了一套标准化的软件架构,涵盖多个基础软件模块。CanIf(CAN Interface,CAN接口) 是这些基础软件模块之一,主要用于抽象和管理CAN总线的底层硬件驱动与上层协议栈之间的接口。CanIf模块的作用是提供一个统一的接口,使上层应用不需要直接与底层CAN硬件打交道,从而提高系统的可移植性和可维护性。

2025-10-27 00:30:00 53

2009年全国研究生数学建模竞赛-“华为杯”研究生数学建模竞赛2009年-完整版数据及试题

2009年全国研究生数学建模竞赛-“华为杯”研究生数学建模竞赛2009年-完整版数据及试题

2024-01-04

华为杯第四届中国研究生数学建模竞赛-B题:机械臂运动路径规划的算法设计

华为杯第四届中国研究生数学建模竞赛-B题:机械臂运动路径规划的算法设计

2024-01-04

2007年全国研究生数学建模竞赛优秀论文-C题:高速公路路面质量改进的分析论文及源代码(附MATLAB代码及lingo代码实现)

2007年全国研究生数学建模竞赛优秀论文-C题:高速公路路面质量改进的分析论文及源代码(附MATLAB代码及lingo代码实现)

2024-01-04

MATLAB算法实战应用案例精讲-黄金正弦算法-GoldSA-MATLAB实现源代码

MATLAB算法实战应用案例精讲-黄金正弦算法-GoldSA-MATLAB实现源代码

2023-11-11

MATLAB算法实战应用案例精讲-多跟踪器优化算法-(MTOA)-MATLAB实现源代码

MATLAB算法实战应用案例精讲-多跟踪器优化算法-(MTOA)-MATLAB实现源代码

2023-11-11

MATLAB算法实战应用案例精讲-最有价值球员算法-MVPA-MATLAB实现源代码

MATLAB算法实战应用案例精讲-最有价值球员算法-MVPA-MATLAB实现源代码

2023-11-11

MATLAB算法实战应用案例精讲-学校算法 (SBO)-MATLAB实现源代码

MATLAB算法实战应用案例精讲-学校算法 (SBO)-MATLAB实现源代码

2023-11-11

Can网络诊断15765中文车载诊断标准ISO_15765-3_cn.rar

Can网络诊断15765中文车载诊断标准ISO_15765-3_cn

2023-11-04

Can网络诊断15765中文-车载诊断标准ISO_15765-1(中文)总体信息(20160922093326).rar

Can网络诊断15765中文-车载诊断标准ISO_15765-1(中文)总体信息(20160922093326)

2023-11-04

Can网络诊断15765中文-车载诊断标准ISO_15765-2_cn.rar

Can网络诊断15765中文-车载诊断标准ISO_15765-2_cn

2023-11-04

Can网络诊断15765中文车载诊断标准ISO_15765-4_cn.rar

Can网络诊断15765中文车载诊断标准ISO_15765-4_cn

2023-11-04

“华为杯”研究生数学建模竞赛2019年-完整版数据及试题

“华为杯”研究生数学建模竞赛2019年-完整版数据及试题

2023-09-20

2007年全国研究生数学建模竞赛-“华为杯”研究生数学建模竞赛2007年-完整版数据及试题

2007年全国研究生数学建模竞赛-“华为杯”研究生数学建模竞赛2007年-完整版数据及试题

2023-09-20

高教社杯数模竞赛特辑论文篇-2018年A题:高温作业专用服装设计-数据及代码实现

高教社杯数模竞赛特辑论文篇-2018年A题:高温作业专用服装设计-数据及代码实现

2023-09-06

高教社杯数模竞赛特辑论文篇-2013年B题:碎纸片的拼接复原(代码实现)

高教社杯数模竞赛特辑论文篇-2013年B题:碎纸片的拼接复原(代码实现)

2023-08-31

高教社杯数模竞赛特辑论文篇-2013年A题:车道被占用对城市道路通行能力的影响(代码实现)

高教社杯数模竞赛特辑论文篇-2013年A题:车道被占用对城市道路通行能力的影响(代码实现)

2023-08-31

华为杯2007年D题附件 邮局间直达公路里程-数据集

为了佐证我的博文内容,0积分,CSDN不要给我涨价!!!

2023-03-12

研究生华为杯2007年C题附件-标准和技术要求以及配合比报告统计

该材料用于辅助博文内容,0积分,请CSDN不要随意调积分!!!

2023-03-11

第六届Mathorcup数学建模竞赛A题 淡水养殖池塘水华发生及池水净化处理数据

第六届Mathorcup数学建模竞赛A题 淡水养殖池塘水华发生及池水净化处理数据

2022-12-29

### 中国智慧医疗行业发展综述

内容概要:本文《中国智慧医疗行业白皮书》探讨了智慧医疗在中国的发展背景、应用场景、面临的挑战及未来展望。文章首先分析了政策、资金支持、新临床需求和新兴技术对智慧医疗发展的推动作用,指出智慧医疗在解决医疗资源分布不均、提升诊疗效率和个性化健康管理方面的重要性。随后,文章介绍了智慧医疗在创新价值链深化、区域医疗智慧化、智慧医院建设和智能家庭保健等多场景的应用进展。接着,文章指出了智慧医疗发展中的主要挑战,包括院内院间互联互通障碍、医患人员适应性不足、政策法规不完善和服务定价及支付难题。最后,文章提出了未来发展的建议,强调建立统一标准、加强患者和医务人员的培训、制定合理的定价策略、确保数据安全和明确法律技术规范。 适合人群:医疗行业从业者、政策制定者、科技企业、投资者及相关研究学者。 使用场景及目标:①帮助医疗行业从业者了解智慧医疗的发展现状和趋势,以优化医疗服务;②为政策制定者提供参考,以完善相关政策法规;③为科技企业提供市场洞察和发展方向;④为投资者提供行业分析,以做出明智的投资决策。 其他说明:智慧医疗的持续发展对中国医疗健康环境产生了积极且深远的影响,但仍面临数据安全、隐私保护、技术风险、定价和支付等多维度挑战。政府、医疗机构、科技企业需共同努力,加强多方交流,推动智慧医疗合规、向善发展。

2025-08-22

### 2025年618大促消费数据洞察:电商行业全域概览与重点赛道复盘

内容概要:本文基于2025年618大促期间的线上消费数据,深入分析了市场趋势、平台策略及各行业表现。文章首先概述了电商行业向长期主义转变的趋势,指出促销周期延长、活动规则简化,并强调了从“价格内卷”转向“效率竞赛”的特点。随后,详细探讨了淘宝天猫、京东、抖音三大平台在618期间的具体表现,包括用户规模、订单量、成交额等方面的数据。此外,文章还对重点行业如美容护肤、彩妆、零食、宠物用品、大家电进行了数据复盘,揭示了各行业的增长亮点和消费趋势。最后,特别关注了国补政策对家电和新能源汽车市场的推动作用,以及情绪经济、IP经济、人工智能等新兴领域的崛起。 适用人群:电商从业者、市场营销人员、品牌运营者、行业分析师等。 使用场景及目标:①帮助电商从业者理解当前市场动态,调整营销策略;②为品牌运营者提供消费者行为和偏好分析,优化产品定位;③协助行业分析师评估各平台和行业的增长潜力,预测未来发展趋势;④支持市场营销人员制定精准的推广计划,提高市场竞争力。 其他说明:报告基于大数据分析,结合了各平台公开资料,为读者提供了详尽的数据支撑和趋势解读。对于希望深入了解2025年618大促期间消费行为及市场变化的读者,本文提供了宝贵的数据参考和战略指导。

2025-08-22

### 文章总结:2025金融大模型应用与智能体建设案例集述 本文档

内容概要:本文档汇集了金融行业中大模型技术应用的50余个标杆案例,涵盖智能客服与营销、智能风控与合规管理、知识管理与智能问答、运维安全与测试智能化、投顾与业务管理、创新技术与平台建设六大核心场景。各案例展示了大模型如何通过技术创新、管理机制创新及应用效能提升,助力金融机构实现智能化转型。具体而言,案例中提及的技术应用包括但不限于:基于大模型的信贷报告生成、智能合规助手、知识图谱构建、智能金牌教练、智能问答系统等。这些应用不仅提高了工作效率

2025-08-22

### 【玩具市场分析】2025解压玩具品类洞察报告:市场规模、消费者洞察与品牌案例分析

内容概要:本报告由大数跨境出品,详细分析了2025年解压玩具品类的市场概况、热门品类、消费者洞察、行业分析及品牌案例。报告指出,在全球经济不确定性和职场内卷的背景下,解压玩具迅速从边缘走向主流,成为具有情感价值和商业潜力的成熟赛道。市场涵盖益智玩具、陶瓷玩具、挤压球、指尖陀螺等多种类型,材质包括硅胶、塑料、泡沫等。2024年全球解压玩具市场规模达55.2亿美元,预计2025年增长至58.8亿美元,中国市场增速显著,2024年突破200亿元。热门品类如捏捏乐、指尖玩具等表现出强劲增长势头,尤其是北美和亚太地区。消费者画像显示,女性为主力消费群体,Z世代为情绪经济主力,解压玩具广泛应用于缓解压力、提升专注力等场景。行业分析指出,解压玩具市场将持续扩张,线上电商和IP联名成为主要推动力。 适合人群:玩具制造商、跨境电商从业者、品牌营销人员、市场分析师。 使用场景及目标:①了解解压玩具市场的规模、增长趋势及潜在机会;②掌握核心消费人群及其购买偏好,优化产品设计与营销策略;③借鉴成功品牌的布局策略,提升品牌竞争力。 其他说明:大数跨境为行业提供广告、物流、支付、财税等专业咨询服务,助力从业者在解压玩具市场中把握趋势,抢占先机。

2025-08-22

### 2025即时零售全时段消费场景新趋势报告:全时段消费生态的深度解析与未来展望

内容概要:报告《2025即时零售全时段消费场景新趋势》由饿了么、淘宝闪购和尼尔森IQ联合发布,深入剖析了即时零售如何通过“线上下单→就近发货→即刻送达”的模式,打破传统零售的时间和空间限制,推动全天候消费新趋势。报告指出,即时零售不仅满足了消费者“即需即达”的需求

2025-08-22

### 2025餐饮行业白皮书:人力资源核心指标分析与趋势展望、文档概述

内容概要:2025餐饮行业白皮书主要聚焦于餐饮行业的人力资源核心指标,包括样本分布、涨薪率、离职率、应届生起薪、城市薪酬差异系数、人力需求、招聘趋势、热门职能以及福利洞察等方面。通过对全国主要城市和企业的数据分析,揭示了餐饮行业的最新发展趋势和人力资源现状。报告指出,餐饮行业的涨薪率在过去几年波动较大,2024年出现负增长,预计2025年将继续保持较低水平。同时,餐饮行业的离职率较高,尤其在2021年至2023年间,离职率持续上升。应届生起薪方面,本科及

2025-08-22

### 汽车行业基于人工智能的汽车智能化转型:应用场景、价值成效与未来发展趋势

内容概要:本文全面剖析了人工智能在汽车行业的多元化应用场景、价值成效及未来发展前景。文章指出,随着人工智能与云计算等技术的发展,汽车行业正经历深刻的智能化转型,从智能驾驶、智能座舱到车企内部各环节的持续优化,AI为汽车赋予了超越传统交通工具的功能与价值,提升了产品竞争力、用户体验及企业运营效率。文中详细介绍了智能驾驶、智能座舱、智能客服、研发设计、生产制造、供应链管理、营销销

2025-08-22

这篇文章《2025“人工智能+”教育行业应用白皮书》全面探讨了人工智能在教育行业的应用现状、发展趋势及其对未来教育生态的深远影响

内容概要:本文深入探讨了人工智能与教育行业的融合发展及其带来的变革。文章首先分析了当前教育面临的个性化、规模化和高质量之间的矛盾,随后介绍了人工智能技术的发展及其在教育领域的应用现状。文中详细描述了AI在辅助教师教学、促进学生成长、优化教育环境等方面的多种应用场景,包括智能备课、个性化学习规划、智能评估、智能校园管理等。文章还强调了政策支持对AI+教育发展的推动作用,并展望了未来的发展趋势,指出将从工具辅助转向生态重构,从技术助力转向技术融合,最终实现教育公平与伦理治理的有机统一。 适合人群:教育决策者、教育从业者、教育技术开发者、关注教育未来发展的社会各界人士。 使用场景及目标:①辅助教师提高教学效率,优化教学流程,如智能备课、作业批改、课堂互动等;②促进学生个性化学习,提升学习效果,如个性化学习路径规划、智能答疑、心理健康支持等;③优化教育环境,实现教育资源的公平分配,如智能排课、校园安全管理、科研支持等;④为教育政策制定者提供参考,推动教育数字化转型,如政策框架构建、教育体系改革等。 其他说明:文章不仅展示了人工智能在教育领域的广泛应用,还强调了技术应用中的伦理和安全问题,呼吁在技术创新中嵌入人文关怀与制度保障,确保技术向善,真正实现教育公平和质量提升的目标。

2025-08-22

这篇文章是一份名为《数据分析与数据营销手册》的文档概述,文档由北京诸葛云游科技有限公司出版,主要面向希望深入了解数据采集、分析及营销应用的企业和个人 以下是文章的主要内容总结:

内容概要:本手册由北京诸葛云游科技有限公司出品,旨在帮助读者了解数据采集、分析和营销应用,涵盖从数据赋能、采集逻辑、UTSE模型到多种采集方式的详细介绍。手册详细解析了数据赋能的重要性,阐述了数据采集的三大方式(链接标记、嵌入SDK、API),并深入介绍了UTSE(用户、触点、会话、事件)模型及其在用户识别、设备关联和行为记录中的应用。手册还探讨了不同埋点方式(代码埋点、全埋点、可视化埋点、服务端埋点)的特点及应用场景,强调了数据采集与分析的协同工作流程。此外,手册介绍了数据分析中的场景分析、通用分析、留存分析等模块,以及数字营销的最新趋势和发展,包括智能营销和营销4.0的概念。最后,手册展示了数字营销工具的开放性,如前端表格导出、SQL查询平台、API调取、数据仓库直连等,以满足不同业务需求。 适合人群:具备一定数据分析基础,从事互联网、市场营销、产品研发等领域的企业管理人员、产品经理、数据分析师和技术人员。 使用场景及目标:①帮助企业理解数据采集和分析的重要性,掌握不同采集方式的应用场景;②通过UTSE模型实现精准的用户识别和行为记录,优化用户体验;③掌握数据分析的基本方法,如场景分析、通用分析、留存分析等,提升业务决策能力;④了解数字营销的发展趋势,应用智能营销工具提高营销效果;⑤利用开放性数据工具实现数据的高效流转和应用。 其他说明:手册内容丰富详实,不仅涵盖了理论知识,还提供了实际案例和操作指南,适合初学者和有一定经验的专业人士阅读。手册强调了数据驱动业务增长的理念,倡导企业在数字化转型中充分利用数据资产,实现精细化运营和持续增长。

2025-08-22

这篇文章详细探讨了企业AI应用落地的各个方面,旨在为企业在AI技术的实际应用中提供指导和支持 以下是文章的主要内容总结:

内容概要:本文详细探讨了企业AI应用落地的现状、目标与挑战,强调了企业成功应用AI的三大关键任务:应用/升级到新一代企业软件、加强/开展数据治理与知识治理、接入/部署主流大模型与垂类模型。文章通过具体案例展示了用友BIP在多个行业中的成功实践,包括立高食品、中国华电、伊利集团和双良硅材料等。用友BIP通过统一数智底座、嵌入核心业务、确保结果可靠、保障安全合规等措施,帮助企业实现AI技术的深度融合与高效应用,从而提升企业运营效率、优化客户体验并创造新的商业价值。 适用人群:企业高管、IT负责人、数据科学家、业务分析师等关注企业AI应用落地的专业人士。 使用场景及目标:①了解企业在AI应用落地过程中面临的挑战与应对策略;②学习如何通过新一代企业软件和大模型提升企业运营效率;③掌握数据治理与知识治理的最佳实践;④借鉴成功案例,制定适合自身企业的AI应用落地策略。 其他说明:本文不仅介绍了AI技术的应用,还强调了企业在推进AI落地时需要综合考虑战略规划、组织架构和技术选型等多方面因素,确保AI技术能够真正赋能业务,实现企业的可持续发展。

2025-08-22

### 【小红书情绪营销】基于情绪价值的营销策略与实战指南:构建品牌与用户的情感连接

内容概要:本文为《2025小红书情绪营销白皮书》,系统阐述了在消费新周期中,品牌如何通过“卷情绪”而非单纯卷价格或产品来实现更高的溢价和复购。文中强调了情绪价值的重要性,指出情绪营销不仅能提升产品溢价,还能增强品牌资产。白皮书详细介绍了情绪营销的SOP,包括情绪洞察、构建关系、创造情绪场域和案例拆解四个步骤。同时,文中还探讨了情绪营销的应用场景,如内容种草与情绪营销的结合,并提供了多个成功案例,如泡泡玛特、蜜雪冰城等。此外,文章还分析了情绪营销的风险,如情绪反噬和情绪撕裂,并提出了相应的规避策略。 适合人群:品牌营销人员、社交

2025-08-22

### 酒类行业2025年中国酒类行业发展分析与趋势洞察:市场规模、消费偏好及营销策略

内容概要:本文详细分析了2025年中国酒类行业的发展趋势,涵盖市场规模、消费偏好、细分品类、政策法规及营销策略等多个方面。数据显示,2016-2024年中国酒类流通市场规模稳步增长,线上渠道发展迅速,传统节假日销售表现优于电商大促,男性主导酒类消费但女性对低度酒需求增加。白酒、啤酒、洋酒等主流品类中,白酒仍占据主导地位,但养生酒、葡萄酒等新兴品类快速增长。此外,酒类行业正逐步向品牌化、品质化方向发展,政策监管助力行业规范,推动可持续发展。 适合人群:从事酒类行业的从业者、投资者、市场营销人员及对酒类市场感兴趣的读者。 使用场景及目标:①了解中国酒类市场的最新动态和发展趋势;②掌握不同酒类品类的市场表现和消费偏好;③研究政策法规对酒类行业的影响;④探索品牌营销和产品创新策略。 其他说明:本文基于大量数据和市场调研,提供了详尽的图表和案例分析,帮助读者全面了解酒类行业的现状和未来发展方向。建议读者结合自身业务需求,深入研究相关数据和案例,以便更好地把握市场机会。

2025-08-22

【个人洗护市场】2025个人洗护市场趋势洞察:社媒热度与消费偏好分析及细分品类增长预测

内容概要:报告基于魔镜洞察的数据分析,详细阐述了2025年个人洗护市场的趋势。首先,个人洗护市场整体呈上升趋势,特别是身体护理和头发护理两大类目,其中身体护理占据更大市场份额,线上销售额同比增长27%,而头发护理同比增长17.9%。消费者对局部护理产品(如颈部、手部、足部)的需求日益精细化,香氛类产品因情绪需求成为热门。头发护理方面,消费者关注防脱发、控油、香氛等功效,传统中草药成分如侧柏叶、何首乌等表现突出。身体护理则从基础保湿向美白、紧致抗皱等功能性护理升级,香味成为消费者选购的重要因素,尤其是木质香调和东方香调产品增长迅速。送礼、差旅、约会等场景下,消费者更愿意为高品质、高情感价值的产品付费,高端礼盒产品销售额显著提升。 适用人群:个人洗护品牌商、市场研究人员、产品经理、营销人员以及对个人洗护市场感兴趣的投资者。 使用场景及目标:①了解个人洗护市场的最新趋势和消费者需求变化;②为产品研发、品牌定位、市场营销策略提供数据支持;③评估不同场景下的产品销售潜力,制定针对性的推广计划;④识别高增长潜力的细分市场,提前布局新产品开发。 其他说明:报告强调了社交媒体和电商平台在推动个人洗护市场发展中的重要作用,品牌应积极利用这些平台进行精准营销和用户互动。此外,环保包装和可持续发展理念逐渐成为市场竞争的关键因素,品牌需关注这一趋势,以提升品牌形象和社会责任感。

2025-08-22

【企业级AI开发管理】神州问学Agent中台:高效安全的多行业智能解决方案

内容概要:本文档是关于神州数码集团股份有限公司推出的“神州问学”平台的市场厂商评估报告。神州问学最初定位为企业级AI基础设施,后转型为企业级Agent中台,旨在推动AI技术的规模化落地。该平台已应用于金融、能源、医疗等多个行业,提供信创与非信创两种交付模式,支持私有化部署。平台特点包括:①通过工程化工具链和MCP协议支持,显著缩短Agent开发周期;②采用“技术调优+知识治理”模式,实现97%的业务准确率;③轻量化模型部署与智能记忆复用,降低算力成本;④构建完善的安全防护体系,确保数据安全和合规。 适合人群:对企业级AI应用开发和管理感兴趣的IT专业人士、企业决策者和技术管理者。 使用场景及目标:①加速企业级Agent开发流程,提升开发效率;②提高Agent响应精准度,减少模型幻觉;③优化算力成本,提高性能效益;④保障企业数据安全和合规性,适用于金融、政务等高合规要求行业。 其他说明:神州问学平台凭借其技术创新和应用优势,已在多个行业中获得成功应用,典型客户包括天士力医药集团、成都太古里等。平台的多维度安全防护体系和高效开发工具链,为企业提供了强大的支持和保障。

2025-08-22

《智能体技术和应用研究报告(2025年)》

内容概要:本报告由《智能体技术和应用研究报告(2025年)》编制,详细探讨了智能体技术的发展现状、关键技术、产业应用、问题挑战和发展建议。智能体作为大模型的原生应用形态,能够将模型能力转化为任务执行能力,加速行业数字化转型和智能化升级。报告指出,智能体具备科研和应用双重价值,能够推动基础理论创新和跨学科融合,同时显著提升各行业效率。关键技术方面,涵盖模型多维能力、全局规划、工具调用和通信协议,确保智能体在复杂环境中高效运行。产业应用方面,智能体已广泛应用于电信、制造、金融、政务等多个领域,推动降本增效和创新发展。问题挑战部分讨论了认知规划能力不足、应用场景创新不足、安全伦理等问题。发展建议部分提出加强大模型攻关、促进多领域落地应用、引导智能体对齐人类价值偏好,以实现智能体技术的可持续发展。 适合人群:具备一定技术背景的研究人员、工程师和企业决策者,特别是关注人工智能和智能体技术发展的专业人士。 使用场景及目标:①了解智能体技术的发展趋势和关键技术;②掌握智能体在各行业的应用案例和实践经验;③识别智能体技术面临的挑战和应对策略;④探索智能体技术的未来发展方向和政策建议。 阅读建议:本报告内容详尽,涵盖智能体技术的多个方面,建议读者根据自身需求选择性阅读。对于希望深入了解智能体技术的读者,建议重点阅读关键技术和发展建议部分;对于关注行业应用的读者,建议重点阅读产业应用部分。

2025-08-22

【企业AI应用】2025年中国企业AI应用现状与挑战:行业差异、增效路径及人才变革分析了文档的主要内容

内容概要:报告基于对410家企业的问卷调查,分析了截至2025年4月底中国AI相关企业的现状和发展趋势。我国现存超424.3万家AI相关企业,2025年新增约28.6万家。AI领域呈现“两极分化”,一方面生成式AI广泛应用,另一方面市场关注垂类场景应用。AI分为基础型AI(自动化执行标准化流程)和战略型AI(构建智能生态系统)。AI普及率在不同行业中存在差异,制造业、零售业使用率较高,金融业较低。企业选择AI时主要考虑增效、技术成熟度与可靠性。AI技术冲击与员工留存率呈弱相关性,反而带来更多新兴职业机会。AI重塑HR职业能力图谱,需构建数字化人才画像体系,优化人才管理流程,确保技术与业务场景深度耦合。 适合人群:企业管理者、人力资源从业者、AI技术开发者以及对AI发展趋势感兴趣的各界人士。 使用场景及目标:①帮助企业理解AI在不同行业的应用现状与挑战;②指导企业制定AI战略,提高AI应用的成功率;③为企业HR提供AI时代的职业规划与人才管理策略。 其他说明:报告强调了企业在AI应用过程中面临的挑战,如技术与核心业务流程衔接松散、AI人才短缺、风险理解不足等问题。同时指出,尽管AI带来诸多机遇,但企业仍需理性对待,逐步推进AI技术的应用。

2025-08-22

AUTOSAR从入门到精通-2024汽车标准法规目录.pdf

AUTOSAR从入门到精通-2024汽车标准法规目录.pdf

2024-07-23

第十一届 MathorCup 高校数模挑战赛赛题及数据

第十一届 MathorCup 高校数模挑战赛赛题及数据

2024-07-11

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除