- 博客(1715)
- 收藏
- 关注
原创 “华为杯”研究生数学建模竞赛2017年-【华为杯】B题:面向下一代光通信的 VCSEL 激光器仿真模型
得出以下主要结论:在相同的偏置电流条件下,随着温度的升高,带宽的峰值向。在相同的温度下,随着电流的增大,带宽的峰值越小且曲线由波峰形状。方案,包括可能的数学公式,不同温度和偏置电流下的带宽响应曲线,并与问题。线,得出以下主要结论:在相同的偏置电流条件下,随着温度的升高,带宽的峰。在相同的温度下,随着电流的增大,带宽的峰值越小且曲线由波峰形状逐渐变得。得的激光器特性曲线和模型中仿真得到的特性曲线,之后,可以将两组曲线的差。说明的是,由于数值优化算法的成功与否很大程度上依赖于初始参数的猜测,参。
2026-01-08 00:30:00
3
原创 数学建模算法案例精讲500篇-【数学建模】数据清洗
数据清洗(Data cleaning)– 对数据进行重新审查和校验的过程,目的在于删除重复信息、纠正存在的错误,并提供数据一致性。数据清洗从名字上也看的出就是把“脏”的“洗掉”,指发现并纠正数据文件中可识别的错误的最后一道程序,包括检查数据一致性,处理无效值和缺失值等。因为数据仓库中的数据是面向某一主题的数据的集合,这些数据从多个业务系统中抽取而来而且包含历史数据,这样就避免不了有的数据是错误数据、有的数据相互之间有冲突,这些错误的或有冲突的数据显然是我们不想要的,称为“脏数据”。
2026-01-07 10:59:28
11
原创 AUTOSAR从入门到精通-【自动驾驶】RTK定位(二)
RTK定位技术(实时动态差分定位技术)是基于载波相位动态实时差分方法的高精度定位技术,通过基准站与流动站协同工作实现厘米级三维定位。基准站将观测数据及坐标信息实时传输至流动站,流动站结合自身GNSS观测数据组成差分观测值进行处理,可在1秒内完成解算,有效消除电离层延迟、对流层折射等公共误差源。该技术支持10-15公里范围内的实时动态作业,具备单人操作、无需点间通视和实时精度验证特性,广泛应用于工程放样、地形测图及控制测量。
2026-01-05 00:30:00
6
原创 AUTOSAR从入门到精通-【自动驾驶】RTK定位
RTK,英文全名叫做Real-time kinematic,也就是实时动态。这是一个简称,全称其实应该是。
2026-01-04 00:30:00
11
原创 AUTOSAR从入门到精通-【自动驾驶】多传感器时间同步
时间同步作为多传感器融合的前提,确保了多传感器数据在时间维度上的一致性,这对于数据融合的准确性和实时性至关重要。本节将详细介绍机器人平台常用的全球卫星定位系统、相机、惯性测量单元、轮速计和激光雷达信号进行时间同步的基本方法,通过确保传感器数据在时间上的一致性,为机器人的场景感知和导航等任务提供准确的时间基准。随着技术的不断发展,多传感器时间同步方案将更加完善,为轮式机器人平台的性能提升提供有力支持。在实际应用中,需要根据具体的机器人平台和应用场景,选择合适的时间同步方案,并不断进行优化和调整。
2025-12-30 00:30:00
24
原创 AUTOSAR从入门到精通-【自动驾驶】激光雷达点云中“鬼影”和“膨胀”问题
点云噪点是指激光雷达采集到的一些无效点,它容易造成目标检测算法模型的误检。激光点云噪点的主要来源有两方面:一方面是目标物表面造成的噪点。比如,目标物表面材质的性质(高反射率的表面材质引起的点云反射能量过强,而使得目标物比实际大小更大)、粗糙程度(凹凸不平的表面使得点云的发射角度发生变化)等;另一方面是外部扫描环境造成的噪点,如雨雪雾尘等颗粒物遮挡了点云而无法反射回点云等。点云噪点的处理主要集中在预处理阶段的滤波处理环节。滤波处理是从算法应用的角度来处理噪点,但是有些噪点并不能简单地通过滤波算法来处理。
2025-12-29 00:30:00
27
原创 AUTOSAR从入门到精通-【自动驾驶】多传感器时间同步(二)
智能汽车的核心是通过多维度感知、实时决策和精准控制实现辅助驾驶与智能交互,而这一切的前提是 “时间基准一致”,由于不同传感器采集数据的频率、机制不同,只有在时间基准一致的情况下,数据融合、控制反馈才能准确进行,等情况。时间同步技术看似基础,却是保障智能汽车安全、高效运行的 “隐形骨架”。时间同步:分布式系统的“隐形时钟管家”时间同步技术是指通过硬件、协议或算法,使多个独立系统、设备或节点的时钟基准保持一致(或误差控制在可接受范围)的技术体系。
2025-12-27 00:30:00
25
原创 AUTOSAR从入门到精通-【自动驾驶】纵向端到端自动驾驶
传统E2E方法侧重于通过显式或隐式的场景表征,直接输出轨迹,其优势在于系统集成度高、执行效率快且在结构化场景下稳定性强,能够有效减少模块间的信息丢失和错误累积,是目前车企落地最广泛的实战派。
2025-12-24 00:30:00
47
原创 AUTOSAR从入门到精通-【自动驾驶】端到端(E2E)
传统模块化智驾将任务拆解为感知、预测、规划,每个任务对应一个子模块并单独训练,这种割裂的训练导致了严重的信息丢失和误差累积,难以应对复杂场景。传统端到端、以大模型为中心的端到端、以及混合端到端。图 1 端到端自动驾驶范式对比。(a)(b)传统端到端、(c)以大模型为中心的端到端、(d)(e)混合端到端。
2025-12-23 00:30:00
39
原创 AUTOSAR从入门到精通-【自动驾驶】特斯拉全自动驾驶(FSD)
特斯拉全自动驾驶系统(Full-Self Driving,简称FSD)是特斯拉公司开发的高级驾驶辅助系统,旨在通过神经网络技术实现环境感知与车辆控制,在驾驶员监督下完成导航、转向、变道、泊车等操作。 该系统自2021年发布Beta测试版以来持续迭代,最新版本为2025年10月推出的v14版本。FSD v14版本基于端到端神经网络架构,取代了传统代码逻辑,通过数百万视频片段训练模型,以模仿人类驾驶决策。 其功能覆盖住宅区街道、城市道路及高速公路,支持交通信号识别、自动变道和环岛通行等场景。
2025-12-22 00:30:00
44
原创 数学建模算法案例精讲500篇-【数学建模】非凸损失函数优化(二)
在实际解决问题过程中,都希望我们建立的目标函数是凸函数,这样我们不必担心局部最优解问题,但实际上,我们遇到的问题大多数情况下建立的目标函数都是非凸函数,因此我们需要根据场景选择不同的优化方法。我们在寻找优化方法论时,一定要选择更合理的方法论。很多非凸优化问题可以转化(并非是等价的)为凸优化问题,并给出问题的近似解。当非凸优化应用到机器学习中时,目标函数可以允许算法设计者编码适当和期望的行为到机器学习模型中,例如非凸优化中的目标函数可以表示为衡量拟合训练数据好坏的损失函数。
2025-12-21 00:30:00
24
原创 数学建模算法案例精讲500篇-【数学建模】非凸损失函数优化
非凸优化问题是指目标函数或约束条件中存在至少一个非凸(即“非向下弯曲”)成分的优化问题。与凸优化问题不同,非凸优化问题的解空间可能存在多个局部最优解,且这些局部最优解未必是全局最优解,因此求解难度显著增加。1. 非凸优化的核心特征非凸目标函数:函数图像存在“凹陷”或复杂弯曲(如多个波峰波谷)。例如:f(x)=sin(x)+x^2(既有凸部分又有非凸振荡)。非凸约束集:可行域的形状复杂,如非凸多边形或离散点集。例如:约束条件 x∈{0,1}(整数规划问题)。2. 与凸优化的关键区别。
2025-12-20 00:30:00
20
原创 “华为杯”研究生数学建模竞赛2018年-【华为杯】E题:多无人机对组网雷达的协同干扰(续)(附MATLAB代码实现)
参考文献4.3 模型二的建立与求解相较于问题一模型,问题二中不再规定无人机的航向、航速、飞行高度以及匀速直线运动的运动状态。在需要同样地完成附件 1 中 20 个时刻的虚假目标位置坐标点过程中,每一架无人机的速度、航向可以改变,这也使更少数量的无人机即可完成附件一中虚假航线。但题目对于无人机运动状态做出了尽可能少做转弯、爬升、俯冲等机动动作,转弯半径不能过小等要求。在完成规定虚假航线的前提下,由于每一架无人机同一时刻可产生多个假目标信息,所以还可以产生多条虚假航迹。
2025-12-18 00:30:00
26
原创 “华为杯”研究生数学建模竞赛2018年-【华为杯】E题:多无人机对组网雷达的协同干扰
首先建立单机干扰单部雷达的模型,如图 4.1 所示,描述了单机干扰单部雷达时。状态,然后在第二题的基础上,以最大化虚假航迹数目为优化目标,以飞行高度、行航迹进行优化,探求理想化飞行轨迹及与实际轨迹的差别,完善飞行轨迹模型。化算法,建立了求解无人机航迹和虚假航迹的非线性规划模型,并基于仿真计算。与编程优化,得到了满足目标航迹点的无人机飞行轨迹和附加产生的虚假航迹。人机的飞行速度,将问题简化为一架无人机至多干扰一部雷达的模型。的限制,移动剩下自由的无人机,通过搜索算法来找到可能的虚假航迹点,由此。
2025-12-17 00:30:00
32
原创 AUTOSAR从入门到精通-【自动驾驶】模仿学习(IL)
模仿学习(Imitation Learning)也被称为基于演示的学习(Learning By Demonstration)或者学徒学习(Apprenticeship Learning)。机器是可以与环境进行交互的,但是大部分情况下,机器却不能从这个过程中显示的获得奖励(例外是类似于马里奥之类的游戏,显然获得的分数就是奖励)。
2025-12-14 00:30:00
33
原创 AUTOSAR从入门到精通-【自动驾驶】模仿学习(IL)(二)
模仿学习有人又称为学徒制学习,示范学习,但又有人觉得只有逆向强化学习才能称为学徒制学习。示范学习就是人类示范给机器,让机器去模仿学习。不同于加强学习,在模仿学习中,机器可以与环境互动,但并不会得到Reward,因此模仿学习并非受到Reward影响,主要还是受到专家展示启发。Reward不好定义如果手工制作的奖励可能会造成无法控制的行为,考试要100分是目标,那机器可能学到的是作弊就能100分。行为克隆Behavior Cloning。
2025-12-13 00:30:00
22
原创 AUTOSAR从入门到精通-【自动驾驶】数据标注(二)
自动驾驶数据标注中人员培训与管理是保证标注质量的根基。标注人员需要理解自动驾驶感知的基本原理,才能准确区分不同交通要素。此外还要熟练掌握标注工具的各项功能。定期组织培训与考核,形成知识库与常见问题解答,并通过标注示例和对比案例帮助标注员理解规范细节。在标注流程中,质量控制尤为关键。可在标注的不同阶段设置多级审校机制,初级标注完成后进行自检,中级审核员复查,再由高级专家进行抽样验证;对于发现的问题,要及时反馈给标注员并迅速修正。
2025-12-11 00:30:00
40
原创 AUTOSAR从入门到精通-【自动驾驶】数据标注
自动驾驶数据标注是指在自动驾驶系统所采集的感知数据(如摄像头图像、激光雷达点云、毫米波雷达等)中,为各种交通要素(车辆、行人、交通标志、车道线等)手动或半自动地添加类别标签和空间标记(如边界框、多边形轮廓、实例ID、时序关联等)的过程。通过准确、规范的标注,机器学习模型才能够从海量原始数据中学习到目标的特征与行为模式,实现对真实道路环境的感知、理解与预测。高质量的标注不仅是训练和评估算法性能的基础,也直接关系到自动驾驶系统的安全性和可靠性。自动驾驶数据标注就像给汽车“贴标签”和“画地图”。
2025-12-10 00:30:00
60
原创 AUTOSAR从入门到精通-汽车ECU标定
即使同一生产线的发动机,零部件(如喷油器、节气门)的加工精度也存在细微差异,导致相同控制信号下的实际输出不同。同时,不同市场用户对驾驶体验的偏好不同(如欧洲用户偏好动力响应,东南亚用户偏好经济性),可通过标定调整动力输出特性实现差异化适配。内部控制参数(如喷油脉宽、点火提前角、节气门开度等),使被控系统(如发动机)在全工况范围内达到性能最优的过程。(像狙击手既要打十环,还要保证连续射击的稳定性)。标定也得在台架、实车上迭代:从怠速到全负荷,模拟高温、高原等环境,把喷油、点火、增压这些参数磨到精准,既要。
2025-12-08 00:30:00
45
原创 数学建模算法案例精讲500篇-【数学建模】Floyd路径算法
Floyd算法(弗洛伊德算法)是一种用于求解给定加权图中所有顶点对之间最短路径的经典动态规划算法,由罗伯特·弗洛伊德(Robert Floyd)于1962年提出。与Dijkstra算法仅能求解单源最短路径(从一个顶点出发到其他顶点的最短距离)不同,Floyd算法可解决多源最短路径问题(任意两点间的最短距离)。
2025-12-07 00:30:00
26
原创 数学建模算法案例精讲500篇-【数学建模】Floyd路径算法(二)
Floyd算法又称为插点法,是一种利用动态规划的思想寻找给定的加权图中多源点之间最短路径的算法,与Dijkstra算法类似。从任意一条单边路径开始。所有两点之间的距离是边的权,如果两点之间没有边相连,则权为无穷大。对于每一对顶点 u 和 v,看看是否存在一个顶点 w 使得从 u 到 w 再到 v 比已知的路径更短。如果是更新它。把图用邻接矩阵G表示出来,如果从Vi到Vj有路可达,则Gij=d,d表示该路的长度;否则Gij=无穷大。
2025-12-06 00:30:00
30
原创 AUTOSAR从入门到精通-汽车ECU标定(三)
ETAS公司的INCA作为传统标定工具的代表,提供了强大的功能和丰富的插件支持,特别适合大型整车企业的复杂标定需求。这些工具通常支持项目化管理,能够保存标定工程的完整状态,包括参数设置、测量配置和实验数据,便于后续的数据分析和追溯。XCP协议包含了3个部分,主要分为XCP驱动层(XCP是如何进行数据传输的)、A2L文件(用于定义通讯所需信息)的格式描述和自动化标定的工具的介绍。通过标定系统,我们可以轻松地读取ECU中的标定变量数据,并在标定平台上进行编辑和修改,将控制算法转化为C语言或其他编程语言的代码。
2025-12-05 00:30:00
60
原创 AUTOSAR从入门到精通-汽车ECU标定(二)
明确标定覆盖的怠速工况,包括“冷机怠速(水温20℃)、热机怠速(水温85℃)、负载怠速(开启空调/大灯)”三类典型场景,针对每类场景设定转速目标(冷机850rpm、热机750rpm、负载900rpm)与油耗上限。
2025-12-04 00:30:00
34
原创 AUTOSAR从入门到精通-Fee算法与Block类型
FEE算法是AutoSAR中用于Flash EEPROM仿真的核心机制,通过Block(数据块)管理实现非易失性数据的可靠存储。
2025-12-02 00:30:00
36
原创 数学建模算法案例精讲500篇-【数学建模】隔离森林(iForest)(二)
孤立森林 iForest(Isolation Forest)是一种无监督的异常检测算法,能处理大规模的多维数据。其基本原理是:异常数据由于数量较少且与正常数据差异较大,因此在被隔离时需要较少的步骤(异常样本更容易快速落入叶子结点,或者说异常样本在DT上,距离根节点更近)。两个假设:1. 异常样本占比很小(如果占比太高,可能被识别为正常的);2. 异常样本与正常样本差异较大(主要是全局上都为异常的异常,局部小异常可能发现不了,因为差异并不大)。
2025-12-01 00:30:00
26
原创 数学建模算法案例精讲500篇-【数学建模】隔离森林(iForest)
工作的过程中经常会遇到这样一个问题,在构建模型训练数据时,我们很难保证训练数据的纯净度,数据中往往会参杂很多被错误标记的脏数据,而数据的质量决定了最终模型性能的好坏。如果进行人工二次标记,成本会很高,我们希望能使用一种无监督算法帮我们做这件事,异常检测算法可以在一定程度上解决这个问题。异常检测分为离群点检测(outlier detection)以及奇异值检测(novelty detection)两种.离群点检测:适用于训练数据中包含异常值的情况,例如上述所提及的情况。
2025-11-29 00:30:00
40
原创 AUTOSAR从入门到精通-Fee算法与Block类型(二)
Fee组件实现FLASH的模拟EEPROM功能,即更合理的分配FLASH的资源,通过软件算法更大限度的利用FLASH延长使用寿命。Fee组件位于Memory Hardware Abstraction层里,为上层MemIf提供接口,下层是Fls组件。Fee是Fls组件的抽象层,实现FLASH的模拟EEPROM功能,用户调用读写等接口后,在Fee_MainFunction()执行模拟EEPROM策略后计算要写的地址、数据,再调用Fls里的接口实现读写擦。
2025-11-28 00:30:00
48
原创 数学建模算法案例精讲500篇-【数学建模】符号回归算法(gplearn)(附python代码实现)
符号回归(Symbolic Regression)是一种有监督的机器学习方法,用于发现某种隐藏的数学表达式或函数,以最佳地拟合给定的数据集。与传统的回归方法不同,符号回归不仅仅是找到一个数学模型的参数,而是通过搜索和组合基本数学运算符和函数,自动构建出一个数学表达式。同时,符号回归也是为数不多的可解释机器学习方法。相比于线性回归的只能表示线性关系,符号回归能够输出更加复杂的非线性关系(+、-、*、/、sin、cos、exp等)。
2025-11-26 00:30:00
39
原创 数学建模算法案例精讲500篇-【数学建模】交替方向法(ADMM)(二)(附MATLAB和python代码实现)
ADMM算法是一种用于解决具有可分离结构的凸优化问题的分布式算法。它将原始问题分解为多个子问题,每个子问题在各自的节点上独立求解,并通过迭代更新变量和拉格朗日乘子来实现全局优化。ADMM算法具有形式简单、收敛性好、鲁棒性强等优点,且不要求子优化目标函数严格凸和有限。ADMM算法的基本原理在于将复杂的全局优化问题分解为更易处理的局部优化问题,然后通过协调步骤使它们协同工作以达到全局最优。主问题优化:关注全局变量。辅问题优化:关注局部分解变量。乘子更新:通过拉格朗日乘子来协调两者的差异。
2025-11-24 00:30:00
34
原创 数学建模算法案例精讲500篇-【数学建模】交替方向法(ADMM)(附MATLAB和python代码实现)
ADMM算法,全称为交替方向乘子法(Alternating Direction Method of Multipliers),是一种用于解决优化问题的迭代算法,特别是那些可以分解为多个子问题的优化问题。ADMM结合了拉格朗日乘子法和分裂方法的特点,通过交替优化原问题的分裂子问题和更新乘子来逼近全局最优解。它在处理大规模和分布式优化问题时特别有效,广泛应用于机器学习、信号处理、统计学习、图像处理等领域。ADMM算法的基本思想是将一个复杂的优化问题分解为几个更简单的子问题,这些子问题可以更容易或更高效地求解。
2025-11-22 00:30:00
49
原创 点云从入门到精通技术详解100篇-基于线结构光的焊缝三维检测(下)
结构光平面的标定是目时为了获取目标的深度信息,因此引入激光器,当结构光线 条打在目标的表面时,形成一个结构光平面,通过对该平面的标定可以计算得到其平面 方程,这样通过平面与物体相交点的坐标值,可以获取目标表面的三维信息,完成物体 的三维检测。结构光平面标定的方法种类繁多,其中比较主流的方法有交比不变性原理结构光平 面标定、矢量叉乘法结构光平面标定等等,本节通过对这些方法中的原理进行推敲,推 导出适合本次实验的结构光平面标定方法。(1)交比不变性。
2025-11-19 00:30:00
39
原创 点云从入门到精通技术详解100篇-基于线结构光的焊缝三维检测(中)
通过上文中对于相机传感器各种配件的性能参数的计算,以及对三角测量原理原理 的分析以及其使用场合的研讨,最后对相机传感器的结构进行了设计,其结构如下图2.8 所示:相机传感器整体由外壳、相机、镜头、激光器、插座、信号灯和两个夹紧装置组成 总质量大约为137克。
2025-11-17 00:30:00
85
原创 点云从入门到精通技术详解100篇-基于线结构光的焊缝三维检测
随着工业现代化的快速推进,当今工业领域对于检测技术的需求也日益提升,传统 的检测工具如千分尺、测距仪以及三坐标测量机等以接触式为主要检测方式的工具已经 无法满足工业检测对于精度的需求。而一些非接触式检测技术如激光扫描仪、超声波检 测器等由于其实时性、非接触性以及检测精度高等特点逐渐步入工业检测的平台,成为 检测领域的研究热点之一。本文以高危环境下的焊接视觉检测工作为背景,对基于线结构光的焊缝三维检测关 键技术做应用研究。
2025-11-15 00:30:00
39
原创 数学建模算法案例精讲500篇-【数学建模】DBSCAN聚类算法(二)
请注意,这种方法在数据点非常多时可能会占用大量内存,因为需要存储一个大小为 N×N 的矩阵,其中 N 是数据点的数量。所以,它更适合于中小规模的数据集。该算法将具有足够密度的区域划分为簇,并在具有噪声的空间数据库中发现任意形状的簇,它将簇定义为密度相连的点的最大集合。以上代码常规的实现方案,但有一个问题,当需要调整 dbscan 的超参数 eps 和 min_samples 每次都要重复计算,等待的时间非常的长。在DBSCAN算法中,聚类”簇”定义为:由密度可达关系导出的最大的密度连接样本的集合。
2025-11-11 00:30:00
63
原创 “华为杯”研究生数学建模竞赛2018年-【华为杯】D题:基于卫星高度计海面高度异常资料 获取潮汐调和常数方法及应用(续)
点,根据该点到其最近两条上(下)行轨的距离比,在这两条上(下)行轨间的。下(上)行轨上可找到与该点具有相同距离比的一系列点,对这些点的调和常数。得到一定数量的数据,即沿轨道的潮高。常数,利用计算出来的调和常数进行插值,可以得到研究区域内的任意点的调和。法,将稀疏的、不规则分布的数据插值加密为规则分布的数据,以适合绘图的需。性插值,即计算出研究区域内任意点的调和常数,通过对插值效果的分析比较来。有陆地的同潮图(即左边的)为相关资料的同潮图,进行对。同样,对迟角的高次多项式拟合得到的绝均差也不一定小,
2025-11-09 00:30:00
46
原创 “华为杯”研究生数学建模竞赛2018年-【华为杯】D题:基于卫星高度计海面高度异常资料 获取潮汐调和常数方法及应用
摘要:本文基于TOPEX/POSEIDON卫星高度计数据,采用最小二乘法提取了南海区域M2、S2、K1、O1四个主要分潮的潮汐调和常数。通过建立阈值-误差反馈模型,确定了75次观测次数阈值,使调和常数计算精度达到振幅误差±10cm内、迟角误差小于10°。针对正压潮与内潮分离问题,提出了11次多项式拟合方法,实现了有效的信号分离。同时构建了两种空间插值模型(多项式拟合和B样条插值)来绘制南海同潮图。研究结果表明,该方法能准确提取潮汐调和参数,为海洋潮汐研究和工程应用提供了可靠的数据支持。
2025-11-07 00:30:00
62
原创 数学建模算法案例精讲500篇-【数学建模】DBSCAN聚类算法
DBSCAN(Density-Based Spatial Clustering of Applications with Noise)是一种基于密度的聚类算法,将簇定义为密度相连点的最大集合,可在噪声数据中发现任意形状的聚类。其核心概念包括Ε邻域、核心对象、密度可达和密度相连,通过参数扫描半径(eps)和最小包含点数(minPts)确定簇结构。该算法通过递归扩展核心对象的邻域形成聚类,无需预设簇数量且对数据顺序不敏感,但参数选择和密度变化会影响结果。
2025-11-05 14:25:46
204
原创 AUTOSAR从入门到精通-DEM(Diagnostic Event Manager,诊断事件管理器)(二)
Dem全称为Diagnostic Event Manager,负责故障事件的处理、故障数据的存储和管理。简单说其功能是故障事件确认前的故障debounce,故障事件确认时的故障数据存储,故障发生后的故障老化、故障替代(AUTOSAR的故障存储策略)。AUTOSAR标准中对Dem模块最上层分了两菜单栏(参见图1),分别是DemConfigSet,DemGeneral。
2025-11-02 16:20:05
136
原创 AUTOSAR从入门到精通-BSW层CAN驱动模块的CANif模块(二)
CanIf 模块位于底层的(CAN控制器,收发器)驱动和更上的通信服务层(CAN状态管理,CAN网络管理,CAN传输层)之间。CanIf模块是上层通信模块与CanDrv之间的服务接口。CanIf模块提供统一的接口来管理CAN硬件设备(CAN控制器,CAN收发器)。因此,CanSM模块可以基于物理CAN通道来控制多个底层内部和外部CAN控制器/CAN收发器。所有独立于硬件的CAN驱动功能接口组成了CanIf模块,这些独立于硬件的CAN驱动功能接口属于相应ECU的CAN通信设备驱动程序。
2025-10-29 00:30:00
71
原创 AUTOSAR从入门到精通-BSW层CAN驱动模块的CANif模块(三)
AUTOSAR(Automotive Open System Architecture) 提供了一套标准化的软件架构,涵盖多个基础软件模块。CanIf(CAN Interface,CAN接口) 是这些基础软件模块之一,主要用于抽象和管理CAN总线的底层硬件驱动与上层协议栈之间的接口。CanIf模块的作用是提供一个统一的接口,使上层应用不需要直接与底层CAN硬件打交道,从而提高系统的可移植性和可维护性。
2025-10-27 00:30:00
53
2009年全国研究生数学建模竞赛-“华为杯”研究生数学建模竞赛2009年-完整版数据及试题
2024-01-04
2007年全国研究生数学建模竞赛优秀论文-C题:高速公路路面质量改进的分析论文及源代码(附MATLAB代码及lingo代码实现)
2024-01-04
MATLAB算法实战应用案例精讲-多跟踪器优化算法-(MTOA)-MATLAB实现源代码
2023-11-11
Can网络诊断15765中文-车载诊断标准ISO_15765-1(中文)总体信息(20160922093326).rar
2023-11-04
2007年全国研究生数学建模竞赛-“华为杯”研究生数学建模竞赛2007年-完整版数据及试题
2023-09-20
高教社杯数模竞赛特辑论文篇-2013年A题:车道被占用对城市道路通行能力的影响(代码实现)
2023-08-31
### 中国智慧医疗行业发展综述
2025-08-22
### 2025年618大促消费数据洞察:电商行业全域概览与重点赛道复盘
2025-08-22
### 文章总结:2025金融大模型应用与智能体建设案例集述 本文档
2025-08-22
### 【玩具市场分析】2025解压玩具品类洞察报告:市场规模、消费者洞察与品牌案例分析
2025-08-22
### 2025即时零售全时段消费场景新趋势报告:全时段消费生态的深度解析与未来展望
2025-08-22
### 2025餐饮行业白皮书:人力资源核心指标分析与趋势展望、文档概述
2025-08-22
### 汽车行业基于人工智能的汽车智能化转型:应用场景、价值成效与未来发展趋势
2025-08-22
这篇文章《2025“人工智能+”教育行业应用白皮书》全面探讨了人工智能在教育行业的应用现状、发展趋势及其对未来教育生态的深远影响
2025-08-22
这篇文章是一份名为《数据分析与数据营销手册》的文档概述,文档由北京诸葛云游科技有限公司出版,主要面向希望深入了解数据采集、分析及营销应用的企业和个人 以下是文章的主要内容总结:
2025-08-22
这篇文章详细探讨了企业AI应用落地的各个方面,旨在为企业在AI技术的实际应用中提供指导和支持 以下是文章的主要内容总结:
2025-08-22
### 【小红书情绪营销】基于情绪价值的营销策略与实战指南:构建品牌与用户的情感连接
2025-08-22
### 酒类行业2025年中国酒类行业发展分析与趋势洞察:市场规模、消费偏好及营销策略
2025-08-22
【个人洗护市场】2025个人洗护市场趋势洞察:社媒热度与消费偏好分析及细分品类增长预测
2025-08-22
【企业级AI开发管理】神州问学Agent中台:高效安全的多行业智能解决方案
2025-08-22
《智能体技术和应用研究报告(2025年)》
2025-08-22
【企业AI应用】2025年中国企业AI应用现状与挑战:行业差异、增效路径及人才变革分析了文档的主要内容
2025-08-22
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅