- 博客(1606)
- 收藏
- 关注
原创 第十届MathorCup高校数学建模挑战赛-D题:基于统计回归模型的新零售企业精准需求预测研究(续)(附MATLAB代码实现)
不失一般性,对排名为r=20的 skc 的销售量模型的参系数估计值进行误差与灵敏度分析,对此,我们借助 MATLAB 软件在置信水平即犯错误的可能性上限为 5%的前提下求解各参系数的置信区间与及该模型的拟合度如下表由图可见,初期拟合效果并不佳,而后期的拟合效果可观。同时,对参系数的置信区间,即参系数估计值的大小都在置信区间范围内,在 95%置信度的保证下可认为该模型是稳定的,但又存在特别是销售特征因素对应的参系数置信区间。
2025-06-11 00:30:00
3
原创 AUTOSAR从入门到精通-【自动驾驶】HUD 抬头显示原理详解(二)
抬头显示简称HUD,又被叫做平视显示系统,是指以车辆驾驶员为中心、盲操作、多功能仪表盘。它的作用,就是把时速、导航等重要的行车信息,投影到驾驶员前面的风挡玻璃上,让驾驶员尽量做到不低头、不转头就能看到时速、导航等重要的驾驶信息。
2025-06-10 00:30:00
19
原创 第十四届MathorCup高校数学建模挑战赛-D题:基于 QUBO 模型的矿山设备配置与运营方案优化(续)
金在合理范围内时,最大利润取决于矿山本身的经营情况,与启动资金关系较弱.但当。始大规模问题缩小到伊辛机可以解决的问题规模,并迭代求解.所提出的算法通过基于。时间内产生有效的解决方案,在理论上具有较高的求解效率,可以有效地找到全局最优。数可能较为困难,需要丰富的经验和专业知识.在实际应用中,如何有效地将具体问题。和启动资金灵敏度同理,我们保持除油价以外的参数与问题二求解时不变,通过改。形式也具有一定的难度.这需要对问题有深入的理解,并具备一定的建。模拟器,为此类问题的求解提供了多种途径,提高了求解问题。
2025-06-08 00:30:00
45
原创 第十届MathorCup高校数学建模挑战赛-D题:基于统计回归模型的新零售企业精准需求预测研究
2018 年 7 月 1 日至 2018 年 10 月 1 日内且累计销售额排名前 50 的 skc 的销售。处于 2019 年 6 月 1 日至 2019 年 10 月 1 日内且累计销售额排名前 10 的小类)售时间处于 2019 年 6 月 1 日至 2019 年 10 月 1 日内且累计销售额排名前 10 的。在 2019 年 10 月 1 日后 3 个月中每个月的销售量,给出每个月预测值的 MAPE。小类)在 2019 年 10 月 1 日后 3 个月中每个月的销售量,给出每个月预测值的。
2025-06-07 00:30:00
17
原创 第十四届MathorCup高校数学建模挑战赛-D题:基于 QUBO 模型的矿山设备配置与运营方案优化
的解决不仅能够提高城市轨道交通的运营效率,还能为乘客提供更加便捷的换乘服务.。过对矿山运营方案的优化,可以显著提高矿山企业的市场适应性,推动矿业的可持续发。案例中,我们的目标是为一家即将开业的智能化矿山制定一套全面的设备配置和运营方。矿车数量等约束条件,求解需要采购的挖掘机型号和数量,并给出挖掘机和矿车之间的。的精确求解过程可能不成功的情景下使用的一种方案.使用该模型,可以在有限的时间。的解决方案.也就是说,惩罚的公式使可行解等于零,不可行解等于一些正的惩罚量.。
2025-06-06 00:30:00
37
原创 AUTOSAR从入门到精通-【自动驾驶】HUD 抬头显示原理详解
HUD(Head-Up Display)即抬头显示,是一种将车速、导航等关键驾驶信息投影到驾驶员前方视野的技术,起源于军事领域,现已广泛应用于汽车行业,旨在提升驾驶安全性和便捷性。。
2025-06-05 00:30:00
34
原创 AUTOSAR从入门到精通-【自动驾驶】自动驾驶中的摄像头技术(二)
随着自动驾驶技术的快速发展,视觉感知系统作为车辆的“眼睛”,其性能决定了系统的感知精度与决策效率。当前市面上车载摄像头的种类繁多,按功能可分为前视测距、环视360°全景、后视倒车辅助以及舱内监控等类型。这些不同功能的摄像头协同工作,构建起自动驾驶的多维度视觉感知系统。
2025-06-02 00:30:00
52
原创 点云从入门到精通技术详解100篇-基于点云数据的特征约束精简与三维重构(下)
型的表面指示函数的梯度场。学处理方法,将离散的点云数据连接成连续的网格模型,并使网格模型表面能最。究,结合特征约束精简算法处理的点云数据,对点云数据进行三维重构处理,从。的形貌信息,并且表示模型表面范围的指示函数作为一个恒定存在的常数函数,基本不会发生变化,所以输入的点云数据与模型的指示函数之间有着对应的映射。对于模型表面的指示函数梯度,除了在靠近表面边界处的梯度值不为零,的指示函数,在梯度计算上与模型表面点集的内法向量方向是一致的。边界的梯度指向的方法,对于点云模型通过全局计算的方式,重构出相对较好的。
2025-06-01 00:30:00
55
原创 点云从入门到精通技术详解100篇-基于点云数据的特征约束精简与三维重构(中)
点云数据的三维曲面重构涉及到对大量点云数据的法向求解、曲率计算以及数据点匹配查询,所以点云数据的邻域搜索方法会直接影响到后续算法的计算实现。同时三维点云数据间通常没有明显的拓扑连接关系,点云空间索引的目的就是建立数据点之间的邻域连接关系,便于后续对点云数据的计算处理。通过对采样点的邻域搜索,能够计算得到模型在该点处的相对位置表达,从而得到反映特征点云的空间几何属性信息。2.3.1点云数据的K邻域搜索点云数据的邻域是指采样数据集中距离任意点某一范围内点构成的局部点。
2025-05-31 00:30:00
25
原创 点云从入门到精通技术详解100篇-基于点云数据的特征约束精简与三维重构
作为实体模型与数字化数据之间的信息桥梁[1],以点云数据为基础的3D数据处理技术近年来逐渐成为人们研究的热点,并在数字化城市、场景构建、计算机视觉、无人驾驶系统导航以及逆向工程等领域中得到迅猛发展[2,3]。物体的表面形貌是表征三维模型基本属性的重要外在特征,如何获取现实目标物体的关键特征信息,并在虚拟的数字化世界中以高速率、高精度的实现方式对三维模型进行重构复原,引发了众多学者的研究与思考[4,5]。三维重构技术即采用计算机视觉手段对物体进行三维建模。
2025-05-30 00:30:00
48
原创 AUTOSAR从入门到精通-【自动驾驶】自动驾驶中的摄像头技术
自动驾驶车辆的摄像头是感知模块的重要组成,其成本低、分辨率高且能捕捉丰富的语义信息,使其在车道识别、障碍物检测、交通标志和信号灯识别等任务中不可或缺。不同类型的摄像头(单目、双目、环视鱼眼、红外补光)在视场角和深度估计方式上各有侧重对于摄像头来说,高分辨率、高帧率、宽动态范围和低光性能成为其设计的核心指标。摄像头数据需经过畸变校正、图像增强、目标检测、深度估计和鸟瞰图重投影等多级算法处理,以便能为决策层提供可靠信息。为了保证多路摄像头的协同,精确的内外参标定与微秒级时钟同步必不可少。当前。
2025-05-29 00:30:00
18
原创 第十三届MathorCup高校数学建模挑战赛-C题:基于 ARIMA 模型的电商物流调运与优化问题(续)(附MATLAB代码实现)
响,新增物流场地为减轻原线路的货运压力,选择同重要性排名前五的物流场地相距较。问题三在问题二模型的基础上还应添加对关闭线路以及新开线路的约束。为使各线路负荷均衡,引入路线货运量负荷,通过方差衡量负荷的均衡程度。允许进行动态调整,则为动态规划问题,即应综合考虑每天的决策并考虑不同天。的值相对越大,则说明该研究对象距离最劣解越远,则研究对象越好,以综合得。下面比较本问与问题二的不同。3 :站点的输出货物次数,描述工作频率,在物流场地的输出次数多则。关系,若出现未正常流转结果,应分析其未正常流转的货量与负荷。
2025-05-28 00:30:00
47
原创 AUTOSAR从入门到精通-【自动驾驶】自动驾驶中常提的“点云”到底是什么?
点云(Point Cloud):就是用很多“点”来表示一个物体或场景的三维形状和结构。(用点描绘的3D画,好比素描,但不是用线条勾勒,而是“点点点点”拼出物体形状)观察这幅图像,你可以注意到以下几点:由“点”构成:整个场景,无论是车辆、建筑还是树木,都不是由连续的面构成的,而是由大量离散的点组成的。每个点代表了激光雷达扫描到的一个真实世界中的位置。三维立体感:尽管是2D图像,但你可以清晰地感知到场景的深度和物体的三维形状。这是因为每个点都记录了精确的 (X, Y, Z) 空间坐标。
2025-05-28 00:30:00
1257
原创 第十三届MathorCup高校数学建模挑战赛-C题:基于 ARIMA 模型的电商物流调运与优化问题
化,具有周期波动性与总体稳定性,在 2022 年有四次较大波动,考虑季节性因素影响。当突遇疫情、地震等事件时,将会导致物流场地临时或永久停用,其处理的包裹将会被。紧急分流到其他物流场地,以上这些因素均会影响我们各条线路运输包裹的数量,以及。化的线路尽可能少,同时我们要保证各线路的工作负荷尽可能均衡。流转,我们要对此场地关停所导致的货量发生变化的线路数及网络负荷情况进行分析;流场地,假设新开线路的运输能力的上限为已有线路运输能力的最大值。动态调整货物量数学模型,在此问题上我们要考虑到时间对模型的动态调整。
2025-05-27 00:30:00
46
原创 第十三届MathorCup高校数学建模挑战赛-B题:基于 NSGA-Ⅱ的列车时刻表优化(续)(附python代码实现)
题目已经给定的可以作为起点/终点的站点如图 8(深色表示可以作为起点/终点,浅色表示未被选为起点/终点):列车开行数量和列车发车频率都受列车最大满载率的直接影响,从而对企业运营水平和服务水平造成影响。通过分析不同满载率下的列车开行方案,可以得到满载率与企业运营水平和服务水平之间的关系。在问题一中,我们已经研究了最大满载率为 100%的情况,现将最大满载率分别取 90%、95%、105%、110%、115%、120%的进行分析,灵敏度分级结果见表 9。
2025-05-26 00:30:00
48
原创 第十三届MathorCup高校数学建模挑战赛-A题:量子计算机在信用评分卡组合优化中的应用(续)(附python代码实现)
最优解的问题,它通过接受劣解的策略在保证全局最优解的概率,因此能求解出较为优。秀的解,但收敛速度比较缓慢。为进一步展示三种求解思路的效果,绘制如图所示的迭。同样进一步分析问题本质以及了解三种求解思路的优化效果,收集三种求解过程中。产生新解的规则为:在当前解的附近随机产生一个新解,计算新解的目标函数值,同样进一步分析问题本质以及了解三种求解思路的优化效果,收集三种求解过程中。模型,以减少变量和约束的数量。工具求解的效果也比较好,收敛速度相较于模拟退火算法更快,可以用于求解许多实际问题,但在处理大规模问题时,
2025-05-25 00:30:00
29
原创 第十三届MathorCup高校数学建模挑战赛-B题:基于 NSGA-Ⅱ的列车时刻表优化
其他区间只有大交路列车,因此我们将 30 个站点分为小交路区间和其他区间进行讨论。次,对以上 4 个影响因素进行灵敏度分析,得到其与企业运营水平和服务水平的量化关。标规划模型,可用非支配遗传算法(NSGA)进行求解。结合实际要求,从停站时间、追踪间隔、客流需求等多方面出发,得到模型的约束条件。首先,将运行线路分为小交路区间和其他区间,对不同区间进行分类讨论,得到两个区间的企业运营成本和服务水平函数,从而得到整个线路的目标函数。同时,我们结合实际情况,对问题一给出的模型进行改进,讨论了不同的列车编组。
2025-05-24 00:30:00
52
原创 第十三届MathorCup高校数学建模挑战赛-A题:量子计算机在信用评分卡组合优化中的应用
具体来说,通过率越高,通过贷款资格审核的客户数量越多,银行贷款利息收入就越多;的哈密顿算符,引入惩罚标量,得出对应的惩罚函数,将其加入到原目标函数中,转化。信用评分卡可设置不同的阈值,伴随每个阈值可对应不同的通过。策略要确定多个阈值,由此会拥有多种通过率和坏帐率的排列组合,需要选择最优的阈。反的,通过率越低,坏账率也越低。但高通过率一般对应高坏帐率,意味着坏账风险越大,坏帐损失也越大。值,每种阈值下均提供对应的通过率和坏账率。控制工具,用于评估信用风险,不同的信用评分卡之间存在着一定的差异,如何选择最。
2025-05-23 00:30:00
37
原创 点云从入门到精通技术详解100篇-基于二维激光雷达的隧道形貌三维重建(下)
随着隧道测量技术的进步,三维扫描生成的点云数据量庞大且复杂,包含大量噪声,增加了计算机处理的难度。因此,点云数据的精简成为后续优化和三维重建的关键步骤。点云精简需平衡精度、简度和速度,传统方法如基于聚类、迭代和公式的简化各有优劣,但常导致边缘缺失或点云不均匀。本文提出一种基于图信号的特征保留优化点云精简算法,通过将点云表示为图结构,优化特征损失和均匀性损失,实现点云精简。实验表明,该算法在保留尖锐特征和均匀性方面优于传统方法,如体素下采样、随机采样等,尤其在复杂点云数据上表现更佳。此外,本文还改进了泊松曲面
2025-05-21 00:30:00
35
原创 点云从入门到精通技术详解100篇-基于二维激光雷达的隧道形貌三维重建(中)
本文介绍了基于ROS系统的二维激光雷达三维扫描实验,通过树莓派进行数据保存与传输,并在Windows11系统的虚拟机中开发。实验采集了激光雷达的距离、角度信息及IMU的位姿信息,并通过RVIZ模块显示点云数据。数据通过MATLAB转换为PCD文件,使用PCL库进行点云处理。文章还详细讨论了激光雷达点云数据的特点、类型及预处理方法,包括噪声去除、数据平滑和精简。此外,介绍了点云三维重建算法,如三角剖分和泊松曲面重建,以及这些算法在隧道形貌重建中的应用。
2025-05-19 00:30:00
61
原创 点云从入门到精通技术详解100篇-基于二维激光雷达的隧道形貌三维重建
保持隧道结构的强度和稳定性,并通过对变形的及时监测和维护,才能实现快速、稳定、因为其特殊的建造过程以及线路里程长等特点,对施工和运营中的维护提出了很高的质。数据表明,我国铁路、公路系统的建设规模庞大,隧道建设一直是其中的重要组成部分。老化等特点,加之年久失修,这些隧道不仅失去建立之初的功能,同时存在安全隐患。在施工和运行过程中,由于岩土荷载、衬砌支护、施工偏差等因素的变化,导致隧道产。隧道几何形状的安全性直接影响隧道的性。能,安全性的缺乏导致大量资金流失,并且还会影响隧道的正常运营,隧道的维护和使。
2025-05-17 00:30:00
84
原创 第十届MathorCup高校数学建模挑战赛-D题:基于 ARIMA-SVM 和 Holt-Winters 的新零售精准销量模型(续)
短期内的销量,从而能够很好的指导营销和生产,为大数据时代下新零售的发展作出贡献。最后对预测结果进行之前使序列稳定的操作的逆操作(取指数,差分的逆操作),就可以得到原始数据的。也存在一定的问题,例如没有对不同节假日对销量的影响做进一步区分,如国庆之类的传统节日和双十一。建立起来的,因此时间序列的平稳性是建模的重要前提。占有率六个因素对销量的影响,其中,价格波动率我们定义为一年内产品的实际价格方差。营销日里的销量冲击,对于企业合理高效的进行仓库物品的调配,追求资源最大化、利益最大化作出了。
2025-05-14 00:30:00
61
原创 第十四届MathorCup高校数学建模挑战赛-B题:基于深度学习的甲骨文原始拓片单字自动分割与识别研究(续)
划分好的不同比例的数据集上训练,并且通过不断调整超参数来优化训练效果,具体的。与输入甲骨文图像大小之间的关系,我们尝试增加网络的复杂度同时降低网络输入图像。目标,由于其尺寸较小,预测的检测框可能与真实框之间的重叠区域相对较小,这可能。过大,导致训练模型过拟合,所以在验证集上的精度表现不高,对此我们进一步划分数。的特征表征,更意味着提高准确率,不一定需要堆叠更深的层或者增加神经元个数等,因此针对第四问,我们在给定的原始训练集基础上进行了数据扩充,加入了。模型时,需要确保输入图像具有一致的尺寸。
2025-05-13 00:30:00
66
原创 AUTOSAR从入门到精通-【自动驾驶】车路云协同(二)
蜂窝车联网(C-V2X)、边缘计算网络和高精度定位系统的技术发展,为车车、车路、车人和车云系统的全面融合提供了有效支撑。需要建立高效的数据处理和管理平台,实现数据的实时采集、处理和分析,以支持智能决策。制定统一的技术标准和互操作性协议,确保不同系统和设备之间能够无缝对接和协同工作。车路云协同是一种先进的交通管理技术,它通过车、路、云三者的协同作用,实现了全方位的动态实时信息交互,从而提高了交通安全性和效率。
2025-05-12 00:30:00
64
原创 第十三届MathorCup高校数学建模挑战赛-A题: QUBO 模型的信用评分卡组合优化(续)(附MATLAB代码实现)
略的收益和通过率计算得到,表达式变得简洁。对于三重信用卡组合策略的收益,即式。个数更多,在化简过程中首先处理带来负收益的阈值,并且对三次交叉项使用对数法分。于是,三重信用卡组合策略的收益可直接由三个单信用卡评分策略的收益和通过率。问题三的建模与求仍然解遵循计算收益,化简收益表达式,构建优化模型,转化为。的等价变换后,双信用卡组合策略的收益可直接由两个单信用卡评分策。求解几个主要步骤进行。相比问题一和二,问题三的优化变量。求解器对该模型进行求解。中的约束条件,设惩罚函数。
2025-05-12 00:30:00
61
原创 第十届MathorCup高校数学建模挑战赛-D题:基于 ARIMA-SVM 和 Holt-Winters 的新零售精准销量模型
的周期性与季节性,对于国庆、双十一等节假日的敏感度较高,我们以天为基本都单位,对目标小类下的。个节假日的促销力度以及其经济大环境等的区别,我们首先单独分析四个节假日的数据,得到每个节假。的数据计算了各指标在所有节假日中的综合权重值。在如今的需求推动下,新零售企业的生产模式逐步向多品种、小批量迈进,这让商场内零售店铺里的。问题三:为了满足企业更加精准的营销需求,试着建立相关数学模型,在考虑小类预测结果的同时,问题四:请给企业写一份推荐信,向企业推荐你的预测结果和方法,并说明你们的方案的合理性以。
2025-05-11 00:30:00
69
原创 第十四届MathorCup高校数学建模挑战赛-B题:基于深度学习的甲骨文原始拓片单字自动分割与识别研究
型,实现对不同的甲骨文原始拓片图像进行自动单字分割,并从不同维度进行模型评估。到甲骨字符并提取独立的文字区域,这是字形破译的前提。和计算机视觉技术,在甲骨文原始拓片图像的复杂背景中提取出特征鲜明且互不交叠的。征的特殊考量,通用的代表性图像分割方法目前尚不能对甲骨文原始拓片图像中的文字。提取图像特征,建立甲骨文图像预处理模型,实现对甲骨文图像干扰元素的初步判别和。的差异,图像的亮度和对比度可能不均匀,需进行调整以便更好地突出文字信息。这一任务本质上属于图像分割的范畴,但与传统的图像分割任。
2025-05-10 00:30:00
88
原创 AUTOSAR从入门到精通-【自动驾驶】车路云协同(三)
车路协同,这一将车辆、道路基础设施与云计算平台深度融合的技术,正逐渐成为智能化交通生态系统建设的关键。通过信息与通信技术的桥梁作用,车、路、云之间实现了无缝的信息交换与协同工作,共同构建出一个更加智慧的交通生态系统。这一技术不仅有助于提升车辆的智能化水平,通过提供丰富的交通和道路信息来辅助驾驶,还能促进车队管理的智能化。同时,车路云协同系统更是智慧交通和智慧城市建设的重要推动力,能够汇集海量动静态信息数据,以数字化手段强化基础设施、交通管理、公共服务和事故应急响应,从而丰富城市管理的手段和方式。
2025-05-09 00:30:00
71
原创 第十三届MathorCup高校数学建模挑战赛-A题: QUBO 模型的信用评分卡组合优化
粒子群优化算法 (PSO : Particle swarm optimization) 是一种进化计算技术(evolutionary computation)。源于对鸟群捕食的行为研究。粒子群优化算法的基本思想:是通过群体中个体之间的协作和信息共享来寻找最优解,
2025-05-09 00:30:00
41
原创 AUTOSAR从入门到精通-【自动驾驶】车路云协同
在车路云协同系统中,车辆通常安装有多种传感器和通信模块,这些设备能够实时监测车辆自身的状态和周边的环境数据;道路侧则布置有各种监控装置、通信基站及感知设备,用以捕捉路面状况、环境变化以及潜在的障碍或异常;而云平台则肩负着数据存储、信息处理、决策分析和反馈调度的重任。整个系统通过5G网络、车联网(V2X)以及边缘计算等关键技术,实现了各个节点之间的高速、低时延、稳定数据交换,确保在任何时刻都能准确、全面地捕捉到现场动态,并通过云端智能算法做出及时响应。
2025-05-07 00:30:00
60
原创 可视化绘图技巧100篇进阶篇(二十一)-韦恩图(二)
韦恩图(Venn diagram)是一种用于展现集合关系的图形工具,由英国数学家约翰·韦恩在19世纪创立。韦恩图是一种通过圆形或椭圆形的重叠部分展示集合关系的工具,创立于19世纪。它巧妙地运用圆形或椭圆形的重叠部分,来揭示多个集合间的共同元素和差异。韦恩图通常包含多个圆形或椭圆形,每个圆代表一个特定的集合。这些圆之间的重叠区域,便用以表示两个或更多集合所共有的元素。而非重叠区域则揭示了各个集合的独特元素。其主要作用是揭示多个集合间的共同元素与差异,帮助理解逻辑推理、概率论和统计学中的集合关系。
2025-05-05 00:30:00
79
原创 可视化绘图技巧100篇进阶篇(二十一)-韦恩图
简单来说,用重叠圆圈表示不同集合的交集/并集。韦恩图(Venn Diagram)是一种用于展示集合之间关系的图形工具。它通过重叠的圆形来表示不同集合及其交集。每个圆代表一个集合,圆与圆之间的重叠部分则表示这些集合的交集。在组学中的应用场景:韦恩图常用于展示组内或组间的交集、并集情况,帮助分析和比较数据之间的相似性与差异性。通常,韦恩图展示2至4个集合最为合适,以确保图形简洁、易于理解。
2025-05-04 00:30:00
120
1
原创 点云从入门到精通技术详解100篇-基于图的 SAR 三维点云语义分割(下)
方位向和距离向各算法的蒙特卡洛实验数据结果如表 4-4,表 4-5 所示,从表 4-1。图信号联合估计成像的方位和距离切片响应图,可以看出全连接图信号精确估计出多。然而,在实际场景中,我们无法知道具体目标的数量。标,搜索结果出现在搜索边界上,甚至超过搜索边界;算法对图信号联合估计结果虚假点消除的结果,其中。算法在全信噪比的条件下,性能均优于非全连接。算法在全信噪比的条件下,性能均优于非全连接。的值,在归一化结果中是一个非常小的数。可以看出,在任何信噪比条件下,非全连接。能进行距离估计,这里只比较了全连接。
2025-05-03 00:30:00
81
2
原创 第十届MathorCup高校数学建模挑战赛-D题:对新零售目标产品精准需求的预测模型(续)(附MATLAB代码实现)
和问题二类似,问题三我们需要建立相关数学模型,并预测目标小类在2019年10月1日后12周每周的周销量。但是问题三与问题二不同的地方在于,问题三属于大样本分析,且数据庞大,所以我们采取建立基于双隐含层得BP神经网络预测模型的方法来对所需数据进行预测。基于双隐含层的 BP 神经网络预测模型相对灰色预测模型的优越性:灰色模型适合对小样本数据进行预测,而基于双隐含层的BP神经网络预测模型适用于大数据预测,且基于双隐含层的BP神经网络预测模型可以通过一定数据的训练,
2025-05-02 00:30:00
62
原创 点云从入门到精通技术详解100篇-基于二次误差和高斯混合模型的点云配准算法(续)
端点的相接面所构成的区域的平整程度,即代价值越大,该区域越曲折,反之越平整。两个点云模型的结构一旦确定,其二次误差的代价的值也是确定的,即两个点云同一。个结构的位置代价值是基本相同的,因此可以确定对应关系。价值较大的特征描述子在模型上分布不集中,排序后相邻的代价值,它的点的空间位。二次误差描述的代价是由三个点为一组构成的面计算得出,因此需要将点云模型。尽管特征描述子表达了模型特征,但这些描述子是离散的,毫无关联的。计算得到网格所有边的代价信息,该代价的值表示模型上边的两个。网格模型同时具有点的空间信息及。
2025-05-01 00:30:00
63
原创 第十届MathorCup高校数学建模挑战赛-D题:对新零售目标产品精准需求的预测模型
筛选出目标 skc,其次分别筛选出四个节假日中目标 skc 的销售量 S,同时结合 4 个节。性回归方程,找出 S 与 4 个因素直接的关系,最后运用层次分析法,求出 4 个因素对。针对问题三,预测目标小类的指定周销量以及相应的 MAPE。基于对所给数据的分析与筛选,本文认为节假日中共有 4 种因素对目标 skc 的销售量。针对问题一,要求分析不同节假日内各种相关因素对目标 skc 的销售量的影响。编程求解,得出各个因素对目标产品销售量影响的程度,且预测出了目标产品的月销量以及。性化,美观,时尚”等方面。
2025-05-01 00:30:00
47
原创 第十届MathorCup高校数学建模挑战赛-C题:基于蚁群算法的仓内拣货作业调度优化分析(续)(附MATLAB代码实现)
本题可正常使用复核台个数为4个,任务单数量为49份,拣货人员为9人,初始复核台位置、终点复核台位置均未知。影响出库时间大小的因素主要有拣货员单个任务单理想路线长度、拣货人员在复核台的人数分配、以及拣货人员手中的任务单数量分配,在本题中,影响较大的是拣货人员在复核台的人数分配、以及拣货人员手中的任务单数量分配。由于本题多达49个任务单,数量很大,而复核台也多达4个,拣货人员更是多达9个之多,且初始、结束复核台均不知,因此实际算出精确值的算法路线是交错复杂的,而且也不必要。
2025-04-30 00:30:00
48
原创 点云从入门到精通技术详解100篇-基于图的 SAR 三维点云语义分割(中)
维点云数据库的开源,利用图卷积神经网络提取点云特征的方法已经成为处理点云模。间物体外贸,流形特征,经过处理之后的三维点云数据很容易被人们的直观感觉所理。点云数据是以非欧几里得形式存在的,具有非结构化的特点,这与传统的二维图。由于点云拥有以上的特征,人们对点云研究的不断深入,提出了许多点云处理的。本节将简单介绍基于多视角的点云处理方法,这种方法直接将三维点云数据通过。)语义性,点云可以很好的表现物体原始表征,点云数据可以有效地表达空。)邻域性,点云数据之间具有一定的联系,与二维图像数据类似,点云几何。
2025-04-29 00:30:00
60
原创 第十届MathorCup高校数学建模挑战赛-C题:基于蚁群算法的仓内拣货作业调度优化分析
本题仓库有 13 个复核台,4 排货架,其中每排 25 组货架,每组 2 个货架,共 50 个。49 个任务单,数量很大,而复核台也多达 4 个,拣货人员更是多达 9 个之多,且初始、复核台长短以及实际位置情况,我们把货架划分为四个区域:A 区,B 区,C 区,D 区。拓展为 5 个,起始位置为复核台𝐹𝐻03,单人拣货,但仍是典型的动态路径优化问题。级改良的蚁群遗传算法,对仓库拣货路径进行最大程度的迭代优化,通过多重智能优化,题得到的简化模型的分析,通过调整每个拣货人员负责的任务单数和复核台的拣货人数,
2025-04-28 00:30:00
61
2009年全国研究生数学建模竞赛-“华为杯”研究生数学建模竞赛2009年-完整版数据及试题
2024-01-04
2007年全国研究生数学建模竞赛优秀论文-C题:高速公路路面质量改进的分析论文及源代码(附MATLAB代码及lingo代码实现)
2024-01-04
MATLAB算法实战应用案例精讲-多跟踪器优化算法-(MTOA)-MATLAB实现源代码
2023-11-11
Can网络诊断15765中文-车载诊断标准ISO_15765-1(中文)总体信息(20160922093326).rar
2023-11-04
2007年全国研究生数学建模竞赛-“华为杯”研究生数学建模竞赛2007年-完整版数据及试题
2023-09-20
高教社杯数模竞赛特辑论文篇-2013年A题:车道被占用对城市道路通行能力的影响(代码实现)
2023-08-31
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人