椭圆极点极线性质_椭圆,恁么美的焦点弦

本文探讨了椭圆焦点弦的解析几何性质,包括直角坐标和极坐标视角下的焦半径公式,以及焦点弦的长度、通径性质和焦定比等概念。通过深入理解这些结论,不仅可以强化对圆锥曲线特性的认识,还能提升解题的效率和准确性。同时,文章提到了焦点弦与切线的关系,以及由此引出的切点弦方程,鼓励读者通过实践加深理解并尝试应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1832933d185af6f07c04a203309b35bb.png

专题:椭圆焦点

解析几何,对于许多学生来说,可能是倍觉无奈的。

仅计算量的问题,就凸显了自己的不足吧。

而且因为对图形性质的认识不足,在做题时就会显得底气不足,会常常因为知识的储备问题,备觉捉襟见肘。

所以,解析几何,知识的整理是必要的。

那么今天,

就讲讲椭圆的焦点弦。

当然,

双曲线与抛物线的焦点弦,

就自行脑补了。

【焦点弦】:

过椭圆、双曲线或抛物线焦点的弦

焦半径公式

① 直角坐标视角下的半径:


4229a5615b331a3ba1cfb4b8e0d2ae76.png

记住:和函数图像平移一样,左加右减哦。


② 极角坐标视角下的焦半径:


833b3ac33d5b5770e182a9455b1c69c5.png

注意:左减右加,和上面的焦半径公式相哦!

③ 两种视角下的焦点弦长:

0371f34effc239c5747c0f434c98d81f.png

极坐标视角下几个结论

① 通径:

44df6a7c70f41820a4775a265eafb92a.png

两个简单性质:

①AM与椭圆相切 ② kBM=e,kAM=-e

6cef2d6b6e35ff728551a6cb98778d62.gif

② 焦半径倒数和:

c20e314e124b17f356e3bbf25bee5f64.png
01fe6679f019decd66d65b8971baefd4.png

焦定比结论:

焦点分焦点弦的比值问题,称为焦定比问题,利用椭圆第二定义或极坐标方程,可以获知焦定比下的一组重要结论。

871607febe7f316306e2f9b4f873520f.png
dd375e855fee7965cb120213224ad751.png

3焦点弦与切线

710f9b89f5dd53b3679e01e5455de52e.gif

从上面的图像中,最少可以看出三个结论:

■过焦点弦的两端点分别作椭圆切线,

切线交点在准线上。

■过椭圆准线上任一点作椭圆两切线,

切点的连线过定点。

■垂直关系:PF1〦AB。

定点、定线的证明:

ff01b9abc06f7bdd85a7beb5fa682de0.png

从上面的证明过程,

我们还可以得出一个重要的切点弦方程哦:

55f5ee7596289ced7b24f2f3bf2d35d3.png

其实,根据切点弦方程,我们还可以大胆猜测:

只要动点P在一定直线上,

则切点弦所在直线一定过定点。

(观看视频验证结论)

点P和切点弦AB

就是传说中的极点和极线

有兴趣的你

是不是可以自己给自己编个题

来玩玩这个性质呢

垂直关系的证明可以这样:

98ebe65e5bf4a4efc923d6f9ec4cdd8d.png

圆锥曲线中的结论有许多,今天主要就焦点弦相关的几个常见结论做了部分讲解。

其实我认为,对类似这些结论做些研究,不仅便于我们加强对圆锥曲线性质的认识和理解,而且一些结论的证明过程,也包含了解析几何问题处理的常规思路,会让我们以后的解题更加理性和清晰。

当然,双曲线和抛物线中,相应的图形性质有很多是相似的,也需要我们去多比较、多总结,以提高我们解决解析几何问题的整体能力。

END

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值