数论&数学
数论+数学从入门到放弃
(因为博主数论非常不好,如果写错了请及时提醒博主)
组合数学
数论里面非常常用的东西
组合数公式
- \(\dbinom{n}{m} = \dfrac{n!}{m!(n-m)!}\)
- \(\dbinom{n}{m} = \dbinom{n}{n-m}\)
- \(\dbinom{n}{m} = \dbinom{n-1}{m} + \dbinom{n-1}{m-1}\)
- \(\dbinom{n}{m+1} = \dbinom{n}{m} \times \dfrac{n-m}{m+1}\)
阶乘计算组合数取模
(注意模数为质数)
首先预处理阶乘
jc[0] = 1;
for(int i = 1; i <= n; i ++)
jc[i] = (jc[i - 1] * i) % mod;
然后预处理阶乘逆元
(power为带模的快速幂)
inv[n] = power(jc[n], mod - 2);
for(int i = n - 1; i >= 0; i --)
inv[i] = (inv[i + 1] * (i + 1)) % mod;
卢卡斯定理
一般用来计算模数较小但数据范围很大的组合数
\(\dbinom{n}{m} \equiv \dbinom{n\bmod p}{m\bmod p} \times \dbinom{n \div p}{m \div p} \pmod{p}\)
若出现n < m的情况,则答案为0
多重集
多重集是指包含重复元素的广义集合
多重集的排列数
设值为\(a_i\)的数有\(n_i\)个,\(n = \sum n_i\) ,那么该集合的全排列个数为
\(\dfrac{n!}{\prod n_i!}\)
Catalan数列
\(Cat_n = \dfrac{C^n_{2n}}{n + 1} = C^n_{2n} - C^{n - 1}_{2n}\)
以下问题与Catalan数列相关
- n个0和n个1,排成长度为2n的序列,满足任意前缀中0的个数不少于1的个数的序列的数量为\(Cat_n\)
- n个左括号和n个右括号组成的合法括号序列的数量为\(Cat_n\)
- n个元素经过一个栈,形成的合法出栈序列数量为\(Cat_n\)
- n个节点构成的不同二叉树的数量为\(Cat_n\)
- 在平面直角坐标系上,每一步只能向上或右走,从(0,0)走到(n,n)并且除两个端点外不触碰到直线y = x的路线数量为\(2Cat_{n-1}\)
质数
质数的判定
使用试除法,用小于等于sqrt(x)的数试除 x 若能除尽,则 x 为合数
bool prime(int x) {
if(x == 2)return 1;
if(x % 2 == 0 || x == 1)return 0;
for(int i = (int)sqrt(x) | 1; i >= 3; i -= 2)
if(x % i == 0)return 0;
return 1;
}
质数的筛选
//复杂度很低的筛法
for(int i = 2; i <= n; i ++)
if(! w[i]) {
p[ ++cnt] = i;
for(int j = 2; j <= i; j ++)w[i * j] = 1;
}
for(int i = 2; i <= n; i ++) {
if(! w[i])p[ ++cnt] = i;
for(int j = 1; j <= cnt && i * p[j] <= n; j ++) {
w[i * p[j]] = 1;
if(i % p[j] == 0)break;
}
}
线性筛
(一般情况不需要使用)
从小到大累积质因子
//线性筛法
int v[MAXN], prime[MAXN];
void primes(int n) {
memset(v, 0, sizeof(v));//最小质因子
m = 0;//质数数量
for(int i = 2; i <= n; i ++) {
if(v[i] == 0)
v[i] = i, prime[++ m] = i;
//给当前的数i乘上一个质因子
for(int j = 1; j <= m; j ++) {
//i有比prime[j]更小的质因子就停止循环
if(prime[j] > v[i] || prime[j] > n / i)break;
//prime[j]是合数i*prime[j]的最小质因子
v[i * prime[j]] = prime[j];
}
}
}
同余
扩展欧几里得算法
求不定方程ax + by = gcd(a,b)的一组特解
void exgcd(int a, int b, int &d, int &x, int &y) {
b ? exgcd(b, a % b, d, y, x), y -= x * (a / b) : d = a, x = 1, y = 0;
}
乘法逆元
若整数B满足\(B \equiv \dfrac{1}{A} \pmod{P}\) ,则称B为A在模P意义下的乘法逆元
逆元的求法
- 若P为质数,可用快速幂求出:\(B = A^{P-2} \bmod P\)
- 解线性同余方程:\(P x + A y = 1\)答案即为y的值
- 递推:\(inv[i] = P - (P \div i \times inv[P \bmod i]) \bmod P\)